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BACKGROUND
Accumulation of carbon in global woody 
vegetation has become an effective strate-
gy for mitigating climate change. However,  
the quantification of carbon stored in the veg-
etation at scales useful for carbon accounting 
and policy making is lacking. The uncertainty 
around the carbon stocks in forests, particu-
larly in humid tropics has significant implica-
tions for accurately assessing and planning 
to reduce emissions from deforestation and 
degradation (REDD+) at national and regional 
scales. 

The Democratic Republic of Congo (DRC)  
has the second largest area of rainforests in 
the world, covering a complex system of ex-
tensive rivers, humid and dry forests, savanna 
patches, wetlands, mountain vegetation, and 
degraded landscapes. The forests of DRC are 
rich in carbon content and represent one of 
the most important centers of biological di-
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versity in the world, with over 15,000 plants 
and animal species. The DRC forests are fac-
ing threats from industrial timber extraction, 
artisanal and illegal logging, slash and burn 
agriculture, mining, firewood collection and 
the effects of poaching. 

The government of DRC has initiated one of 
the largest jurisdictional emission reduction 
programs in Africa and has launched national 
scale efforts to quantify and monitor changes in 
carbon stocks of forests. The Carbon Map and 
Model (CM&M) program is a component of this 
national effort by developing estimates of car-
bon stocks through remote sensing technolo-
gies. The CM&M project has been developed 
by World Wide Fund for Nature (WWF) in col-
laboration with University of California in Los 
Angeles (UCLA), the Ministry of Environment 
and Sustainable Development DRC (Potapov 
et al. 2012), and other national partners with 
the goal of producing a national forest carbon 
map using innovative ground, air, and space-

borne observations, and building the capacity 
within the existing institutions in DRC to uti-
lize the carbon map in national forest man-
agement, emissions reduction program and  
sustainable land use planning. 
 

PURPOSE
Here, we report on the development of the 
first national carbon map of DRC, based on 
remote sensing techniques, benchmarking 
the distribution of carbon storage in live abo-
veground tree biomass of more than 150 mil-
lion ha of forests in DRC. The report includes 
a summary of the methodology, the ground 
and remote sensing data used in developing 
the map, the regional validation of the car-
bon stocks, and the overall assessment of the 
forest carbon distribution. The map has been 
presented to a diverse group of stakehold-
ers including the Direction des Inventaires et 
Aménagement Forestiers (DIAF) for further 
evaluation and validation using the planned 
national inventory data and improvements at 
any point in future. 

METHODOLOGY
The aboveground forest biomass (AGB) map 
has been developed following the VCS (Veri-
fied Carbon Standard) methodology (VT0005) 
by using by high-resolution airborne Light 
Detection and Ranging (LiDAR) inventory 
samples. The LiDAR flights were designed to 
capture the variability of forest structure us-
ing a systematic random sampling approach 
common in national forest inventory (NFI) 
techniques. Each LiDAR flight covered 2000 
ha (1.7 km x 12 km) with flight orientation ran-
domly selected between 0-180º and locations 
of flight lines randomly selected within a 1 deg 
x 1 deg (~ 1 million ha) grid area to cover more 
than 430, 000 ha of probability-based inven-
tory samples of forest structure. Because of 
their random locations, orientation, and cov-
erage, the flights sampled a large variety of 
forest types including terra firme, swamps, 
woodlands, land use gradients from defor-
estation, degradation, and tree plantations, 
and landscape and environmental gradients 
of elevation and slope, soil, and climate. DRC 
will be the first country in Central Africa to use 
LiDAR inventory sampling as their preferred 
rapid assessment.
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The airborne data were collected by the South 
African Southern Mapping Company (SMC) be-
tween October 2014 and February 2015 using 
Optech LiDAR units and Rollei Phase 1 medium 
format cameras. In addition, SMC acquired 
about 3000 km of ferry lines between the ran-
dom samples to cover approximately 170,000 ha  
of additional LiDAR data over forests of DRC. 
The LiDAR data were converted to AGB by col-
lecting and compiling a new network of 1-ha 
field plots collected by various project partners 
and stakeholders co-located with LiDAR flights 
and covering different forest types in DRC. 
The plots were used to develop an unbiased 
model to estimate AGB from LiDAR data and  
create about 600,000 ha model-based inven-
tory samples for quantifying and validating the 
carbon stocks in forests of DRC. The LiDAR 
samples were combined with satellite imagery 
and machine learning geospatial algorithms 
to map forest aboveground biomass and pre-
dict AGB everywhere in DRC at 1-ha spatial 
resolution. The methodology was established 
and operationalized by developing in-country 
capacity to implement all elements of AGB es-
timation, validation, and improvement of forest 
carbon map in future when additional plots, 
and LiDAR samples become available. 

FINDINGS
The carbon map of DRC reveals a wide  
range of patterns of forest carbon densi-
ty along climate, edaphic and disturbance  
gradients. Overall, forests of DRC contain  
a total of 23.3 ± 0.2 GtC carbon stored in humid 
tropical forests with a mean carbon density  
of 139 ± 1.2 MgC ha-1 in the aboveground 
live trees. At the landscape scale, the varia-
tions in forest carbon density follow distur-
bance and topographical gradients, where  
density of large trees dominating the magni-
tude of biomass varies from intact to logged 
forests, distance to roads and settlements,  
or geomorphological features associated  
with slopes, soil type and moisture conditions.  
The eastern regions of DRC has some of  
the largest trees in the country distributed 

amoung rugged terrains along the foothills of 
eastern mountains below 1000 m asl (above 
sea level). The land cover in the southern prov-
inces of DRC are a mosaic of tree grass savan-
na, riparian forests, and Miombo woodlands. 
The carbon density in these forests are highly 
variable due to land use activities, slash and 
burn agriculture, and fire. The western region 
of DRC is dominated by wetland swamps with 
a combination of permanently and seasonality 
inundated forests and peatlands with approx-
imately 132 ± 11 MgC/ha in hardwood and 36 
± 15 in palm dominated swamp forests. The 
high accuracy of LiDAR derived maps of forest 
height and aboveground biomass resulted in 
very low uncertainty of mapping forest height 
(~3 m RMSE) and 81% precision and biomass  
(~ 50 Mg/ha RMSE) and more than 72% preci-
sion. The derived LiDAR biomass model was 



month, and annual precipitation. Carbon stored in Miombo forests in the south also have distinct 
environmental controls dominated by the rainfall seasonality and followed by subsoil silt fraction, 
mean land elevation, and the annual precipitation.

CONCLUSIONS
The systematic and probability based inventory of forest structure with airborne LiDAR data of 
DRC provided the first physiographical variations of the forest height and carbon density at land-
scape scales. Using the LiDAR inventory measurements calibrated with ground plots, we were 
able to develop the national-level forest biomass distribution at 100 m (1-ha) resolution with a 
formal uncertainty assessment at the pixel level for the entire country. The sampling density was 
designed to provide sub-national and province-level carbon statistics, as well as AGB estimates 
summarized by forest types. Together, the carbon map and the uncertainty can help the gov-
ernment of DRC for national and jurisdictional emission reduction programs, conservation and 
decision making for development programs. 
The spatial products generated from this project, such as the forest height and the biomass 
helped us to estimate the area of forest cover based on the new definition of forests adopted by 
the country. These products have been validated using existing national inventory data collected 
in few regions and can be improved once new ground and remote sensing data become avail-
able. The methodology adopted here have been presented to the government through various 
workshops and meetings and all original data and products have been delivered to the gov-
ernment for developing the capacity within the forestry and environmental agencies for future 
resource management and forest monitoring. 

approximately unbiased when tested on in-
ventory plots distributed across the country, 
making the overall map remain unbiased at 
regional scales.

We assessed the forest cover and car-
bon stored at the national and for all 26  
provinces in DRC to provide baseline  
estimates for future forest management  
and protection. Results show that 4 provinc-
es (Tshuapa, Tshopo, Ituri and Sankuru) have  
the highest mean AGB of more than 300  
Mg/ha. The 10 other provinces (Mai-Ndombe, 
Equateur, Sud-Ubangi, Nord-Ubangi, Monga-
la, Bas-Uele, Nord-Kivu, Sud-Kivu, Maniema,  
and Kasai) have mean AGB estimates around 
200 Mg/ha. These 14 provinces possess 75% of 
the total carbon in the country. The provinces 
with the lowest AGB density are Kinshasa, Ka-
sai Oriental, Lomami and Kongo Central, which 
contribute less than 1% to the country-level car-
bon storage. At national level, the mean AGB 
is 236 Mg/ha for all forested regions, with less 
than 1% average modeling error when consid-
ering both the pixel-based error and the covari-
ance between pixels.

The forest area of DRC including savanna 
woodlands and Miombo forests are estimated 
in this study to be approximately 167 million 
ha. This is significantly larger (> 12 million ha) 
than earlier estimates based on the Landsat 
based map. The difference between the maps 
is largely due to recent changes in the defini-
tion of forests from a minimum of 5 m to 3 m 
height threshold. With the minimum mapping 
area of 0.5 ha and the percent cover of 30%, a 
significantly larger area of woodland savanna 
is classified into forests. 

The carbon distribution in forests of DRC is 
controlled by forest degradation and human 
activities. Environmental variables have weak 
and but significant relationships to forest car-
bon density. For humid tropical forests in DRC, 
mean temperature of driest quarter, topsoil 
organic carbon, landscape elevation variation 
and rainfall seasonality together explain about 
28% of the carbon stock variations. The swamp 
forests, mainly distributed along the Congo 
river system in western DRC, have a more pre-
dictable pattern related to environmental vari-
ables with 66% of the carbon spatial variations 
explained by mean land elevation, land eleva-
tion variation, minimum temperature of coldest 
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RMSE: Root Mean Square Error
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UNFCCC: UN Framework Convention 
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VCS: Verified Carbon Standard
USAID: United States Agency for Inter-
national Development
WD: Wood Specific Gravity or Wood 
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WRI: World Resource Institute
WWF: World Wide Fund for Nature
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Tropical forests provide valuable ecosystem 
services, notably by storing vast amounts of 
biomass, serving an important role for climate 
change mitigation1. Accurate and precise quan-
tification of emissions from deforestation has 
become a key policy issue in light of recent 
developments on the reduction of emissions 
from deforestation and degradation (REDD+) 
as a climate mitigation strategy2. In a nation-
al REDD+ policy framework, historical refer-
ence emission levels (potentially modified by 
one or several adjustment factors) will need 
to be set, and future emissions must be eval-
uated against the reference level as part of a 
monitoring (or measuring), reporting and ver-
ification (MRV) system to determine whether 

Introduction

a country has or has not made significant 
emission reductions3. The uncertainty around 
reference emission levels and the resulting 
emissions from activity data such as land use 
and land cover change (LULC) must also be 
quantified. Because of the principle of conser-
vativeness, results from the use of the lower 
uncertainty bounds for emission factors for 
the reference scenario must be adopted in or-
der to avoid over-crediting future reductions. 
Meeting these conditions for national or re-
gional scale REDD+ programs require a precise 
inventory of forest carbon stocks and changes 
that capture regional variability of forest abo-
veground biomass and land use patterns4,5.  
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Figure 1: Airborne LiDAR scanning and optical 

imagery units of Southern Mapping and the aircraft 

used in 2014-2015 flight campaign in the Demo-

cratic Republic of Congo (DRC). The flights were 

designed based on systematic random sampling to 

collect more than 430,000 ha of the humid tropical 

forests of DRC. The LiDAR and optical imagery 

captures 3-D structure and visible characteristics of 

intact, degraded, swamp forests, and woodlands 

across more environmental and topographical 

gradients.



Many important technical and political  
questions remain to be answered regard-
ing how REDD+-based emission reduction 
projects and programs will be implemented  
at the national level. Smaller voluntary-sec-
tor projects have been operating in many  
countries across the tropics since 2006 under  
the Verified Carbon Standard (VCS) and  
Carbon Communities, & Biodiversity Alliance 
(CCBA) Standards, amongst others, and pro-
vide much guidance as to how national-level 
schemes could operate. However, at the na-
tional level, emission estimates from land cover 
change require information on both the area of  
forest change and the corresponding carbon 
stocks of the ecosystems that are deforest-
ed. Such information is either not available or  
highly uncertain in many countries with ex-
tensive tropical forests. Much of the emphasis 
on emissions from tropical forests to date has 
focused primarily on improving the areal esti-
mates of deforestation; yet significant errors 
exist in the carbon stock element, particularly 
when considering jurisdictional and national 
level emissions6,7. 

The carbon estimates and emission factors 
associated with land use change in tropical 
countries are often based on a small number 
of inventory plots or a combination of intensive 
in situ field sampling, paired with remote sens-
ing methods (satellite or aerial), which are cur-
rently the only available options8. The general 
consensus in the scientific literature regarding 
monitoring forest cover change for reducing 
emissions from deforestation is that satellite 
imagery is practical, feasible and essential 
for determining baseline deforestation over 
time9,10. While methods to map carbon stocks 
directly have not been perfected nor made op-
erational yet – this task would be impossible 
without a combination of airborne and satellite 
imagery, calibrated by field measurements at 
the national scale. 

Current methodologies for mapping forest 
carbon stocks rely strongly on LiDAR sat-
ellite observations of forest structure con-
verted to aboveground biomass (AGB) and 
extrapolated over the landscapes using sat-
ellite imagery8,11–13. This approach can suffer  
from uncertainty when LiDAR sampling is  
uneven or nonrandom, poor calibration of  
LiDAR data to forest biomass, and potential 
geographic bias introduced by the extrapola-
tion approach and sensitivity of the satellite 
imagery to atmospheric conditions and vege-
tation phenology?14.

9

(Above) https://africa.quora.com/Congo-Basin

(Above right) https://africa.quora.com/Congo-Basin

(Below right) Photo © Jeff Walker / Center for 

International Forestry Research (CIFOR)



Figure 2: Schematic of the methodology for devel-

oping forest carbon map of DRC from sample plots 

to calibrate systematic design of airborne LiDAR 

data to wall-to-wall mapping using geospatial 

modeling with satellite imagery.

SYNOPTIC VIEW 
The estimation of carbon stocks in live  
biomass of forests of DRC follows the  
methodology outlined in VCS (Verified  
Carbon Standard) VT0005 tool developed 
by Sassan Saatchi and based on inventory 
sampling of forest structure by using high- 
resolution airborne Light Detection and  
Ranging (LiDAR) systems. The methodology 
was successfully tested in at a regional scale 
along the Pacific Coast of Colombia as part  
of the USAID BioREDD+ project Colombia 
(http://bioredd.org/projects/) and document-
ed and verified as a VCS tool by Terra Global 
Capital in March 2015 (http://database.v-c-s.
org). The airborne LiDAR techniques has 
recently emerged as a promising tool to  
acquire information on forest structure that 
can be converted into forest carbon densi-
ty in a model-based and assisted estimation 
framework16,17. LiDAR provides horizontal and 
vertical information at high spatial resolu-
tions and vertical accuracies through visible 
laser altimetry techniques (see Appendix for 
more information). In forestry applications, 
the measurements provide forest attributes 
such as canopy height at small footprints  
(< 1 m) that allow a detailed characterization 
forest structure that can be used to model 
aboveground biomass and canopy volume. 

The LiDAR samples covered a large area 
(~2000 ha) and are collected based on a sys-
tematic random design matching a typical 
national forest inventory (NFI) technique in 
order to provide unbiased estimates of car-
bon density at the national and sub-national 
scales (Naesset et al. 2013; 2016; Stahl et al. 
2011). We used LiDAR samples and a network 
of 1-ha field plots to develop unbiased models 
between LiDAR derived height metrics and 

TECHNICAL  
METHODOLOGY

10

forest aboveground biomass density. Estima-
tion of Forest above ground and below ground 
biomass is performed at the national and 
sub-national levels using statistical and allome-
tric models taking into account the uncertainty 
of models and sampling approach and spatial 
covariance. The LiDAR derived forest biomass 
samples are combined with existing high res-
olution satellite imagery and machine-learning 
algorithms to map the forest biomass at 100 m 
(1-ha) spatial resolution over the entire country.

STUDY REGION
LiDAR samples cover the humid tropical forests 
of the entire country of Democratic Republic 
of Congo (DRC). The forests of DRC cover a 
complex landscape of water-logged swamp 
forests of Congo River Basin in the west to 
topographically complex and Montane forests 
in the east reaching up to 3000 m in elevation. 
Forest cover in DRC is approximately 160 mil-
lion ha, with about 48% in dense humid forests 
covering the swamps, terra firme old growth 
and secondary forests19. In the past decades, 
DRC had a gross forest loss of less than 2.5% 
concentrated around settlements and mining 
and concession areas. A significant area of the 
forests in central DRC is impacted by forest 
degradation along the main roads and in areas 
with intense logging20. Some of the most intact 
and biomass rich forests are in the sub-mon-
tane and montane forests in the east of DRC, 
where the altitude is higher than 900 m above 
the sea level. The north and south of DRC is 
covered by woodland savanna and grasslands 
with extensive coverage of Miombo forests in 
the southeastern regions. 



Figure 3: The sampling framework in VT0005 

methodology showing a stratified or forested proj-

ect area within which sampling should be conduct-

ed and for which an estimate of AGB is required. 

The remote sensing(RS) sampling units are shown 

with RS flightlines and the individual ground plots 

for calibration of the RS data are shown as solid 

circles randomly located within the flightlines

VT0005 VCS METHODOLOGY
The methodology VT0005 is a tool for mea-
suring above ground live forest biomass us-
ing remote sensing data and is developed by 
Sassan Saatchi as part of the USAID Colombia 
BioREDD+ project (http://bioredd.org/proj-
ects/) and documented as a verified Carbon 
Standard(VCS) tool by Terra Global Capital in 
March 2015 (http://database.v-c-s.org)13. The 
methodology has been developed to produce 
precise estimation of carbon in aboveground 
live forest biomass (AGB) for implementation 
of many agriculture, forestry and land use 
(AFOLU) programs and in developing REDD 
projects . AGB is the primary factor for deter-
mining baseline levels for forest carbon pools. 
The geographic area of AFOLU projects must 
be large (>40,000 ha) and encompass a wide 
range of land use/land cover (LULC) types to 
allow for a cost-effective and efficient imple-
mentation of the methodology. Statistically  
valid sampling strategies for such large  
areas using traditional ground-based forest  
inventory plots are often not feasible due to 
cost and access constraints in tropical coun-
tries. As most VCS methodologies have no 
provision for the use of remote sensing meth-
ods to determine forest aboveground bio-
mass and rely solely on traditional plot-based 

biomass measurements, the VT0005 tool 
is considered the only verifiable technique 
to provide unbiased estimates of carbon of 
forests. Here, we introduce a VCS (Verified 
Carbon Standard) tool intended to reduce the 
need for extensive ground-based sampling 
by leveraging remotely sensed data calibrat-
ed using a minimal number of ground-based 
sampling plots. 

The tool also uses the latest versions of the 
following tools and methodology: 

1.  CDM tool Calculation of the number of  
  sample plots for measurements within  
  A/R CDM project activities  
  (https://cdm.unfccc.int/methodologies/ 
  ARmethodologies/tools/ar-am-tool- 
  03-v2.1.0.pdf/). 
2.  CDM tool Estimation of carbon 
  stocks and change in carbon stocks of  
   trees and shrubs in A/R CDM project  
   activities(https://cdm.unfccc.int/ 
   methodologies/ARmethodologies/ 
  tools/ar-am-tool-14-v2.1.0.pdf/).
3.  VCS methodology VM0006 Carbon  
  Ac counting in Project Activities that  
  Re duce Emissions from Mosaic Defor- 
  estation and Degradation (http://data 
  base.v-c-s.org/).

 

The VT0005 tool provides a method for deter-
mining average AGB density at the stratum or 
area of interest through a combination of re-
mote sensing probability based sampling and 
field measurements in limited inventory plots 
for calibration of remote sensing data. In this 
tool, sampling unit is used to refer a spatially 
contiguous area within a stratum for which 
remote sensing data has been collected (see 
figure for a schematic representation of the 
RSSU). Simple random sampling, systematic 
sampling, or stratified random sampling can be 
employed in designing the samples. In general, 
AGB estimation based solely on sampling units 
is assumed to have larger errors than estima-
tion based only on field inventory data for an 
equal area (e.g. 1 ha). However, the use of larg-
er remote sensing sampling units reduces the 
estimator error21. 

For this tool, the remote sensing sampling unit 
must be large enough to allow for cost effec-
tive flight design. The pixels covered within 
each unit are inherently clustered due to the 
swathing or field-of-view configuration of air-
borne sensors. Therefore, the size of each unit 
necessary to achieve the required precision 
are inversely related: the smaller the sample 
size, the larger the number of samples. For a 
schematic representation of the variation of 

11

TECHNICAL METHODOLOGY



cover and carbon stocks. A total of 432,000 ha of inventory samples were collected by the Air-
borne LiDAR in a discrete return mode with approximately two pulses or about 4 returns per 1-m2. 
The average point density of 4 was enough to provide accurate measurements of the forest height 
by quantifying the digital terrain model (DTM) and the digital surface model (DSM). The difference 
between DTM and DSM provided the maximum height or top canopy height at 1-m2 grid cell.

We received airborne small-footprint LiDAR measurements from DRC with a total of 216 plots and 
96 Ferry lines. It covers the entire tropical forest region of DRC with spatially balanced samples. 
The Southern Mapping Company (SMC) conducted the airborne LiDAR surveys using the Optech 
ALTM 3100 LiDAR scanner from June 2014 to February 2015. The preprocessing of LiDAR data 
from SMC included trajectory calculation, LiDAR point calibration, and LiDAR point classification 
(separating ground and vegetation points). The final classified LiDAR points were delivered in LAS 
format to the University of California, Los Angeles (UCLA).
 
The data were further filtered for any artifacts in ground classification and ground points were 
interpolated to improve the development of DSM and DTM. We produced three raster products  
in 2-meter spatial resolution from the LiDAR point cloud including DTM, DSM, and the canopy 
height model (CHM). We used the existing classification labels from SMC, and created the digital 
terrain model (DTM) using mean elevation of LiDAR points labeled as class 2 (ground) in each 
2-meter pixel. Pixels with missing data were interpolated by natural neighbor interpolation. (2) 
LiDAR points classified as 2 (ground), ) in each 2-meter pixel. Pixels with missing data were inter-
polated by natural neighbor interpolation. (2) LiDAR points classified as 2 (ground), 3 (low vegeta-
tion), and 4 (medium vegetation) were used all together to create digital surface model (DSM). The 
maximum elevation of the used LiDAR points in each 2-meter pixel was picked as the DSM value. 
(3) As a result, the canopy height model (CHM) was calculated as the height difference between 
DSM and DTM. 

The decision of creating 2-meter raster products was based on the designed airborne data ac-
quisition in DRC. With an average coverage of approximately 4 LiDAR points per square meter, 
raster creations in 1-meter resolution are not appropriate. We found unexpected stripes of data 

AGB at the landscape scale, the estimator of 
AGB at the landscape scale must also include 
the spatial correlation among remote sensing 
pixels within each unit. In general, the area 
of each sampling unit with a stratum must 
be larger than the spatial correlation length 
(range of the semivariogram) of estimator er-
ror (see equations in VT0005 tool). The com-
bined area samples from number of units and 
the number of pixels within each unit within 
a stratum must be of a minimum size to al-
low unbiased estimation of mean AGB with 
required precision. Determination of the ex-
tent of remote sensing data collection is also 
dependent on the desired confidence in the 
estimate produced by this tool and on the use 
of AGB estimates known a-priori either from a 
pilot study, from appropriate literature, or us-
ing default values provided by the tool. 

Airborne LiDAR Sampling
To apply the VT0005 tool in DRC, our team 
at the University of California, Los Angeles 
designed an airborne LiDAR-based national 
inventory using a systematic random sam-
pling approach (See Appendix on LiDAR Re-
mote Sensing). The country was divided into 
1oX1o (~ 10,000 km2) grid cells and each cell 
a random point was selected using the Re-
verse Randomized Quadrat Recursive Raster 
(RRQRR) approach, GIS-based tool. 

The LiDAR flights were collected only in hu-
mid tropical zones and all samples in savanna 
regions and Miombo forests were eliminated 
due to the cost and lack of field support for sa-
vanna regions. A total 216 random points that 
were used to center the LiDAR flight transects 
of approximately 2000 ha in area coverage 
(1.7 km x 12 km) and with flight orientation ran-
domly selected between 0-180°. The transect 
size (~2000 ha) was selected for allowing less 
< 1% uncertainty for biomass estimation over 
the entire LiDAR transect based on models 
that include spatial correlation among the  
LiDAR pixels13,41,42. Because of their random lo-
cations, orientation, and coverage, the flights 
sampled a large variety of forest types (terra 
firme, swamps, and woodlands), land use gra-
dients from deforestation, degradation, and 
tree plantations, and landscape and environ-
mental gradients of elevation and slope, soil, 
and climate43. DRC is the first country in the 
tropical belt to use LiDAR inventory sampling 
as their preferred rapid assessment of forest 
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gaps from 1-meter CHM, because of miss-
ing vegetation LiDAR points in these pixels. 
These data gaps cannot be corrected by 
the spatial interpolation method, because 
ground points exist in some of these gaps. 
Such ground points in gaps lead to extreme-
ly low CHM values compared to nearby pix-
els, while they are apparently canopy pixels 
observed from aerial photos. We decided to 
use the 2-meter spatial resolution when a 
sufficient number of LiDAR points are avail-
able in each pixel to determine the maximum 
height. Results show that the CHM raster 
images in 2-meter resolution can eliminate 
most of the undesired gap signals without 
sacrificing too much spatial detail. The 2-me-
ter posting products were the most reliable 

Figure 5: Example of LiDAR point 
clouds showing a sample transect 
of 20 m wide of a forest stand in 
eastern DRC with height of cano-
pies reaching above 40 m. 
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Figure 4: Distribution of LIDAR transects and ferry lines across the humid tropical forests of DRC.



Figure 6: Example of LiDAR  

random sample covering an 

area of approximately 2000 ha 

of intact, degraded and swamp 

forests. The detailed information 

in LiDAR point clouds allow for 

identifying different degrees of 

degradation and separating forest 

types based on their  

3-D structure.

data sets in terms of uniform pulse density, 
geolocation accuracy and the precision of 
height and structure. 

For 1-ha (100-meter) spatial resolution, we 
used approximately 2500 2-meter observa-
tions for each hectare of forest. To ensure 
that the MCH values can well represent the 
mean characteristics of 1-ha pixels, we set 
MCH observations valid only when 90% of 
the 1-ha pixels are covered by airborne LiDAR 
measurements, i.e., we excluded most of the 
edge pixels with partial coverage in the 1-ha 
mapping process. The final LiDAR-derived 
1-ha map of DRC has a total of about 665,000 
valid 1-ha pixels from random sampling and 
ferrylines that can be used in national-level 
MCH and carbon mappings.

Ground Plots
Ground inventory plots distributed over DRC 
were collected to calibrate the LiDAR data. All 
the ground data was collected from various 
partners, listed in appendix, between 2011 
and 2016. The requirement for the field data 

included two sets of plots. One permanent 
plot at 1-ha (100 m x 100 m) and four auxiliary 
plots at 0.25 ha (50 m x 50 m) distributed on 
the eastern and western axis from the center 
of the permanent plots at 250 m and 500 m 
intervals. However, the ground plots we are 
using here vary in size, shape and design be-
cause they are coming from different sourc-
es and collaborators. We are using a total of 
4684 ground plots, varying between sizes of 
0.04ha and 1ha. 139 of these plots meet our 
1ha plot size requirements for biomass mod-
el calibration, of which 47 are set aside for in-
dependent validation (ground estimated AGB 
vs Maximum Entropy estimated AGB) be-
cause they do not fall into any LiDAR scene. 
The smaller plots could not be used for cal-
ibration of the LiDAR data because of their 
size and potential geolocation uncertainty. 
However, smaller plots were used to retrieve 
information on wood density, assuming that 
plot size does not affect this metric.

Locations of inventory plots collected for this 
project were selected randomly in the LiDAR 
transects to make sure that the process of 

calibration and validation does not introduce 
any artificial bias. We also used pre-existing 
plots that fell within the LiDAR transects for 
calibration of the LiDAR. In all cases, the 
measurement of the trees followed the stan-
dard protocols provided by the IPCC guide-
lines to provide diameter, sample heights, 
and species identification. 

Plot location is known for all the plots and 
is characterized by four corners of the plots 
(square or rectangular plots). Although the 
accuracy of geolocation is supposed to be 
between 3 and 8m, in most cases, the error 
was larger and measured distance between 
corners were used to better locate the plots 
on the LiDAR transect. We used only 1-ha 
plots to calibrate the LiDAR data because 
larger plots provide a better relationship 
with LiDAR metrics, reducing the overall un-
certainty of biomass estimation and errors 
associated with the allometry, edge effects 
and geolocation errors22,23. 
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Forest Biomass Allometry
Specific equations for Central African forests 
are rare because of the lack of availability 
of destructive sampling of trees of different 
size and rigorous statistical approaches for 
developing the regression models and test-
ing for random errors and bias24-26. One of 
the most reliable allometric equations widely 
used in most studies in tropical forests is de-
veloped by Chave et al. (2014)24, improving 
upon earlier equations used for estimation 
of aboveground biomass across tropical for-
ests. The new equation includes a large num-
bers of trees from Central Africa, which is an 
improvement over earlier work27, which only 
included trees from Asia and Americas. The 
mean percent bias and variance of this model 
was only slightly higher than that of locally 
fitted models24.

Wood specific gravity was an important pre-
dictor of aboveground biomass, especially 
when including a much broader range of 
vegetation types than previous studies.

Height-diameter Allometry
Within each plot, all stems > 10 cm in diame-
ter (D) at breast height (dbh) were measured 
at 130 cm from ground or above the buttress 
or trunk deformations. In addition, the total 
height (H) of some trees were measured us-
ing instruments such as the Laser ACE 2D 
Hypsometer (MDL, York, UK ie. Bastin plots). 
In all plots established under this project, 
tree height was measured by sampling 10 
trees within each DBH class from 10-50 cm 
at 10 cm interval, 10 trees for 50-70 cm class 
and all trees > 70 cm diameter. Emphasis on 
measurements of the height of large trees 
was designed to improve the ground-esti-
mated biomass estimation as large trees 
contribute significantly more to the overall 
biomass. Height of trees that were not mea-
sured in the field was estimated using local 
H-D models developed typically for each plot 
or sub-region. DBH-H allometric model fol-
lows a logarithmic function:

However, some plots did not have any reliable 
measurements of trees and had no neighbor-
ing plots that could be used to assign a local 
H-D model. For trees in these sites (i.e. Ituri, 
PARAP Luhudi and PARAP Maniema, FRM, etc.), 
AGB was estimated using a allometric models 
without tree height.

Tree species were identified and recorded for 
wood density calculations. Wood density was 
assigned using the World Wood Density data-
base for tropical trees (Chave et al, 2009) and 
the FAO database, at the highest level possi-
ble, species level being the most precise lev-
el, followed by genus and family level. In the 
cases where tree identification was missing or 
did not match any name in our databases, the 
mean wood density of the plot was assigned.
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Above Ground Live Biomass

Here, AGB was calculated using the allometric 
models developed by Chave et al, 2014. 

Where AGBest is the above ground biomass 
in units of Mg ha-1, A is the area of the plot in 
hectare (ha), Di is the diameter of each tree in 
the plot in centimeter (cm), Hi is the height of 
each tree in meter (m), and ρ

i 
is the wood den-

sity of each tree in g cm-3. In Equation 2), E is 
a measure of environmental stress, taking into 
account temperature seasonality, precipitation 
seasonality and climatic water deficit, at any 
location on the globe24. Equation 2 was used 
for sites where no tree height measurement  
or when the measurements were considered 
unreliable.

Figure 7: Relation between forest tree height and diameter in western DRC 

using measurements of 11154 trees from 32 1-ha plots established by Bastin 

et al. (2014)28.
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biomass estimation consists in finding the re-
lationship between LiDAR MCH and ground 
estimated AGB across DRC (see Appendix 
for available data). We tested a model that 
includes wood density as a weighting pa-
rameter to allow the model to be used for 
different forest types with different aver-
age wood density. If general wood density 
variations can be determined from existing 
historical field surveys, the LiDAR model can 
be readily adjusted to produce unbiased es-
timate of the biomass. The overall form of 
the model is: 

where WD represents the plot mean value of 
wood density of individual trees (ρ

i
) in units 

of g cm-3, h represents the mean top canopy 
height MCH in units of m from LiDAR obser-
vation, and ε~N(0,σ2) represents the uncer-
tainty in measurements. 

The LiDAR biomass model is the key element 
of the overall estimation of biomass for strat-
ified forest types and for the national map-
ping. The model will introduce both random 
and systematic errors to the estimation of 
biomass. Due to the large sample size, the 
impact of the random estimation error is 
relatively negligible. However, the bias and 
systematic much be quantified to allow for 
removal of the biomass on the estimation of 
biomass and reduce its effect on the national 
carbon map. 
 
The source of the systematic error in the  
model is the representativeness of plots  
over the entire range of available biomass  
and the quality of the model fit to the data. 
We quantified the systematic error in the  
model through a boot-strapped cross- 
validation process by removing 20 percent 
of the data for validation for 100 times and 
quantifying RMSE and the bias. 

Biomass Correction for  
Small Trees
The aboveground biomass was further aug-
mented for all trees with DBH < 10 cm. Trees 
< 10 cm in diameter and height > 1.3 m were 
not measured in most of the plots. However, 
the data provided for the 40 ha plot in Ituri 
included a complete set with all trees > 1 cm. 
We used a model relating the AGB of all trees 
> 1 cm to trees > 10 cm at 1-ha scale and ap-
plied the model to all 1-ha ground-estimated 
AGB values. Small trees add approximately 
3-7% on the average to the aboveground 
biomass values. 

Below Ground Live Biomass
For belowground estimation of tree biomass 
and carbon stocks, we used established al-
lometry based on the aboveground biomass 
using root to shoot ratios. It is not practical 
to measure below ground biomass in most 
tropical forests on a routine basis. It is also 
very difficult to develop an appropriate, 
country-specific allometric equation for root 
biomass. Instead below-ground biomass 
is estimated from a well-accepted ratio for 
moist tropical forests29,30 ; which reliably pre-
dicts root biomass based on shoot biomass. 
The equations below show how the below-
ground biomass (BGB) can be estimated 
from AGB. 

LIDAR BIOMASS ESTIMATOR
Calibration plots of 1ha were used to devel-
op the LiDAR-biomass model. Out of the 139 
plots of 1ha available in DRC, 92 plots fell 
within LiDAR flightlines. Each of these plots 
represents a region of interest (ROI) in our 
LiDAR 2m resolution CHM dataset. For each 
ROI, pixels were extracted and used to cal-
culate the LiDAR mean canopy height (MCH) 
for each plot. Calibration of LiDAR data for 

biomass estimation consists in finding the re-
lationship between LiDAR MCH and ground 
estimated

Figure 8: Model to scale the forest biomass to all 

trees > 10 cm in diameter from measurements of 

trees > 20 cm in diameter. Plots inlcude data from 

ROC forest inventory and research plots in Congo 

(Afritron) and border regions in Gabon and DRC in 

similar forest types. The plots include both terra 

firme and swamp forests. 

Figure 9: Calibration of airborne LiDAR measure-

ments of mean top canopy height (MCH) in meter to 

above ground biomass density (AGB) in Mg/ha using 

92 1-ha plots distributed in DRC and collected in 

2014-present to coincide in time with LiDAR flights. 

The Ituri plot data were acquired from the Smithso-

nian Institute. The power-law model fit was based on 

a non-linear fit (black line) that provided approximate-

ly no bias in estimation of AGB.
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Figure 10: Workflow and the processing steps to develop carbon estimates in forests of DRC and produce 

spatially explicit map at 1-ha resolution along with uncertainty assessment. 

MAPPING CARBON DENSITY
To produce the national carbon map at 1-ha 
(100-meter) spatial resolution, we built a syn-
ergistic model for estimating biomass and 
total carbon from a variety of data sources, 
including the in-situ measurements of key 
forest attributes such as AGB and wood 
density, airborne small-footprint LiDAR sys-
tematic sampling with a wider spatial cov-
erage at the country level. We also included 
the spatial data from contemporary satellite 
imagery covering the DRC in the optical and 
microwave spectral domain with sensitivity 
to forest structure that will allow the process 
of mapping forest biomass. The key steps of 
our workflow is shown below.
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bution function) effect of Landsat data, we 
corrected our Landsat-8 mosaic using the 
MODerate-resolution Imaging Spectroradi-
ometer (MODIS) Nadir BRDF-Adjusted Re-
flectance (NBAR) product (MCD43A4)34,35. By 
obtaining the MODIS NBAR mosaic similar to 
Landsat-8 for the same time period, we ap-
plied a simple correction as follows:

where L and Lcorr are the Landsat reflectance 
before and after the correction, Lfmean and 
Nfmean are the focal means of original Land-
sat and NBAR reflectance, and we used the 
window size of 2500x2500 meters for both 
data sets.

The third input is the digital elevation model 
(DEM) data derived from the Shuttle Radar 
Topography Mission (SRTM). The global mo-
saic of SRTM land elevation product36 has a 
spatial resolution of 30 meters processed by 
the National Aeronautics and Space Admin-
istration (NASA). Although the latest release

Satellite Image Data 
Environmental layers in our study include 
satellite data and ancillary mapping prod-
ucts of administrative boundary and major 
land cover types based on forest atlas data 
from the Ministère de l’Environnement et 
Développement Durable (Potapov et al. 
2012)20. We also used MEDD data from WRI 
to define the boundary of the country and 
provinces31. From the source vector data in 
shapefile format, we rasterized the map in 
100-meter resolution with binary numbers. 
We assigned the value of 1 to each pixel 
within the country boundary, and the value 
of 0 to the rest of pixels. The final output 
is under the geographic coordinate system 
(GCS) with WGS84 datum (pixel resolution in 
0.0008983°). This becomes our reference 
1-ha map, and every other data set should 
be registered to this map.

We used three sources of satellite data as 
our inputs to the synergistic model. 
The first input is the radar backscatter data 
from the Phased Array L-band Synthetic 

Aperture Radar (PALSAR) sensor aboard the 
Advanced Land Observing Satellite “DAICHI” 
(ALOS). ALOS has the L-band SAR observa-
tions at the wavelength of 1270 MHz for five 
years’ operation from January 2006 to May 
2011 and starting again . The Japan Aerospace 
Exploration Agency (JAXA) has produced the 
ortho- and slope-corrected backscattering co-
efficient of PALSAR global mosaics in both HH 
and HV polarizations from 2007 to 201032. We 
used the 4-year mean (2007-2010) of PALSAR 
data gridded at 100 m as input layer for geo-
spatial modeling.

The second input is the mosaic of Landsat-8 
top-of-atmosphere (TOA) reflectance data 
averaged from April 2013 to August 2016. We 
used the simple cloud-score algorithm on the 
Google Earth Engine33 for cloud screening, 
and kept the median values over the 3 years 
as valid observations. The final cloud-free im-
agery of Landsat-8 contains 4 bands including 
band 4 (Red), 5 (NIR), 6 (SWIR-1), and 7 (SWIR-
2) at 30-meter spatial resolution. To account 
for the BRDF (bidirectional reflectance distri-
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Figure 11: ALOS PALSAR mosaic imagery 

acquired in 2007-2010 and aggregated to about 

100 m spatial resolution showing variations of 

intact (A), degraded (A),B), swamp forests (B), 

Forest-savanna boundary (C), and Miombo wood-

lands (D) in four panels across DRC.
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The right part of the above equation follows 
the Bayes’ theorem, meaning that the poste-
rior probability p(Ak |X) depends on the distri-
bution of X and equals to the product of prior 
probability p0 (Ak ) and the probability distri-
bution pk (X) that finds X to be in the class k, 
and normalized by the probability distribution 
of X for the entire domain of measurement 
variables (environmental layers). For our in-
terested metric MCH, we categorize the nu-
meric values into a set of classes: k1,k2,k3,…
,kn, where 0 < k1 ≤ MCH1 < k2 ≤ MCH2 < ••• 
< kn ≤ MCHmax. And each class has a nominal 
value of MCH – usually the mean value of 
each class, MCHk. To predict the MCH value 
for any pixel i with known measurements Xi, 
we calculate it as the expectation of all class-
es given the ME results retrieved from the 
training set:
 

Empirical tests have found that the mod-
el performs better when assigning higher 
weights to more probable classes,

MCH for locations where we have environ-
mental data. Maximum Entropy (ME), as a 
supervised learning algorithm, is a probabil-
ity-based algorithm that seeks the probabili-
ty distribution by maximizing the information 
contained in the existing measurements37,38. 
In the ME algorithm, a measurement A of 
class k has the probability of occurrence 
p(Ak) with the constraint that probabilities 
of all p(Ak) must sum to 1 (∑kρ(Ak ) =1). From 
information theory, the most uncertain prob-
ability distribution is the one that maximizes 
the entropy term:
 

With some knowledge of additional informa-
tion, i.e. the training set of MCH measure-
ments with corresponding environmental 
data X, the probability distributions are 
“conditioned” on the available observations:
 

of SRTM land elevation is the void-filled prod-
uct (SRTM v3), there are regions with missing 
data in DRC (e.g. regions in the eastern part 
of the country. We used the ASTER GDEM v2 
(Global Digital Elevation Model Version 2) data  
to further fill the gaps in these areas.

The preprocessing of satellite data includes 
spatial aggregation and image registration. 
We aggregated 4 bands of Landsat-8 mosa-
ic, 2 bands (HH/HV) of ALOS PALSAR, and the 
SRTM v3 DEM data into 100-meter spatial res-
olution using spatial average. We also kept 
the local standard deviation of SRTM data 
as an additional layer, creating a final set of 
satellite inputs with 8 layers. Using the 1-ha 
reference map created from the MEDD coun-
try boundary, we registered all our satellite 
layers to the same raster grid.

Geospatial Modeling
With the availability of environmental lay-
ers and LiDAR-derived MCH, we were able 
to build a supervised learning model as the 
spatial estimator to predict the unknown 
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Figure 12: Cloud free Landsat 8 image mosaic 

aggregated to about 100 m using four bands and 

samples of image quality over areas of intact (A), 

degraded (A), swamps (B), Miombo woodlands (C),  

and forest-savanna mosaic vegetation (D).
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large trees dominating the magnitude of AGB 
may be impacted. The AGB distribution across 
forest degradation, roads and settlements, or 
geomorphological features associated with 
slopes, soil type and moisture conditions can 
be readily identified in the map. 

The overall variation of AGB across forest 
types20 ranges from as low as 1±10 Mg/ha for 
shrublands to as high as 296±86 Mg/ha for 
evergreen forests. Within the humid tropical 
zone of the country extended between the 
latitudinal bands of 5°S and 5°N, there is a 
strong spatial variation of carbon storage, 
showing significant differences by geograph-
ical regions. 

The largest stretch of high AGB is across the 
eastern border region of DRC, starting from 
the northeastern Ituri to nord- and sud-Kivu 
provinces (Table 1). These forests are dis-
tributed over rugged terrains along the foot-
hills of eastern mountains below 1000 m asl 
(above sea level) and stretch west into Tsho-
po, Maniema, and southern Sankuru prov-
inces. The average AGB is about 320 Mg/ha 

The parameter optimization procedure  
suggests m=3 as the best parameter with  
the smallest average relative error and  
keeping most test points aligned with the 
1-to-1 line39,40. We evaluated 3 statistical 
measures in our parameter tuning procedure, 
including the coefficient of determination 
(R2), the root-mean-square error (RMSE), and 
the mean signed deviation (MSD). Besides 
the overall MSD applied to all test samples, 
we assessed two additional MSD measures 
for both small trees (MSD1) and large trees 
(MSD2). We define MSD1 as the MSD calculat-
ed for test samples with the sum of predicted 
MCH and measured MCH to be less than 20 
meters. Similarly, MSD2 is defined as MSD for 
samples with the sum of predicted MCH and 
measured MCH to be less than 60 meters. 
Results also suggest that we use a relative-
ly larger regularization multiplier (~5) and a 
large background number to avoid overfitting. 

The mapping of WD adopted the same spa-
tial modeling procedure as MCH. But WD 
training data were from field measurements 
of 1-ha plots covering the whole country. A 
total of 4287 1-ha WD samples of ground 
measured WD was extrapolated using a bi-
as-corrected Random Forest estimator to the 
country-level map.
 
The LiDAR-based biomass estimator is ex-
pressed as a power-law function with MCH 
and WD as input variables. With the availabil-
ity of both MCH and WD maps at the country 
level, we can produce the final AGB map by 
applying the allometric equation. 

FOREST CARBON DISTRIBUTION 
OF DRC
The AGB map of DRC provides the detailed 
spatial variability of carbon stored in the for-
ests at landscape and regional scales (see 
figure below) and follows disturbance and 
topographical gradients, where density of 

Figure 13: Images of digital elevation data from SRTM showing the overall topographical gradients across DRC and 

regions dominated by wetlands (1) and a combination of swamp forests and forest-savanna mosaics (2). 
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and the AGB values of greater than 450 Mg/
ha are observed over significant number of 
1-ha pixels. Another distinct pattern of high 
biomass extends in the northern DRC along 
the remaining intact terra firme forests of 
Bas-Uele, Nord-Ubangi and Mongala provinc-
es. These forests occupy relatively flat terrain 
over Humic acrisols and Hapic Ferralsols soils 
with mean biomass exceeding 380 Mg/ha and 
extensive areas with greater than 500 Mg/ha. 

The eastern mountains and the northern ele-
vated plateau slope gently towards the inte-
rior and to the west of the country where the 

central depression of the Congo Basin forms 
the Cuvette Congolaise swamp (wetlands) 
forests24. The swamp or edaphic forests dis-
tributed along the Congo, Ubangi, other large 
tributaries such as Ruki, Lulonga, Maringa, 
and Tshuapa river systems and within the 
Lake Tumba and Lake Mai Ndombe basins 
have a slightly smaller mean carbon density 
compared to the evergreen forests (206±64 
Mg/ha). The entire swamp forests cover about 
9.5 million hectares in DRC divided into hard-
wood and palm dominated swamps over an 
extensive area of peatlands25. We consulted 
the map of swamp forests provided by and 

estimated the mean AGB for hardwood domi-
nated swamps is 264 ± 21 Mg/ha and for palm 
dominated swamp is 71± 29 Mg/ha. 

The largest contrast in forest biomass is  
mainly in the southern provinces of DRC 
where a mosaic of tree grass savanna and 
riparian forests dominate the landscape in 
southern Bandudu provinces towards the 
extensive southeastern deciduous Miombo 
woodlands in Lualaba and Katanga. These 
forests have significantly lower biomass stock 
(44±37 Mg/ha and 21±30 Mg/ha, respective-
ly), though they cover an equally large region 

Figure 14: Locations of available field data in DRC: (a) All available wood density field data in DRC. (b) All available 1ha field plots of AGB measurements. The colored based map is 

our prediction map of AGB, the blue labels on the left panel are province names, and the black labels on the right panel are the source names of field measurements.
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(117 million ha) in DRC compared to the humid 
tropical forests (115 million ha). The airborne 
LiDAR samples were only conducted in forest 
and forest-savanna boundary regions and did 
not cover the Miombo forests. However, the 
limited sampling and the higher sensitivity of 
ALOS PALSAR imagery to woodland biomass 
range provided reasonable training data set 
for the machine learning algorithm to esti-
mate spatial distribution of AGB in these other 
types of forests. The large variability in the 
estimate is mainly due to the heterogeneity of 
forest cover and the impact of frequent distur-
bance such as fire and land use change such 

as slash and burn agriculture which is partic-
ularly prevelent across forest-savanna bound-
aries and within the Miombo woodlands.

If our LiDAR biomass estimator is free of error, 
the biomass map gives unbiased estimates 
of all available ground plots with an overall 
accuracy of 63 Mg/ha for AGB density. Using 
the carbon factor of 0.49, we summarize the 
recent total carbon storage in DRC to be ap-
proximately 23.3 Pg for the forested region.

Figure 15: National AGB map at 1-ha spatial 

resolution showing spatial patterns of AGB in DRC 

and within provinces along with mean estimates 

of AGB for each land cover types identified using 

the national map of DRC.
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larger prediction error, with an average RMSE 
of 70±6 Mg/ha. The two CV results also con-
firmed that the predictions were statistically 
unbiased over the entire sample size, with 
the mean signed deviation (MSD) at 0.4±3.2 
Mg/ha for LiDAR plot-based sampling and 
-4.5±15.2 Mg/ha for latitudinal sampling ap-
proaches. To further explain the differences 
between the two CV methods, we used a 
variogram-based analysis showing the spa-
tial autocorrelation with paired distance. The 
spatial autocorrelation in the original AGB 
map can extend for more than 200 kilome-
ters, and the covariance between spatially 
On the other hand, the residuals between our 
prediction and LiDAR samples show a similar 
range of spatial autocorrelation but less than 
10% of the original covariance. This residual 
spatial autocorrelation can cause larger pre-
diction uncertainty for pixels far away from 
the training data, resulting in the differences 
between two CV methods.

Other sources of uncertainty come from 
(1) the uncertainty of the field-derived Li-

UNCERTAINTY 
The LiDAR probability sampling approach fol-
lows design-based inventory sampling to en-
sure unbiased estimates of forest structure. 
However, similar to the national inventory 
in design-based ground sample plots, the 
estimation of AGB at local or regional scale 
depends strongly on the use of an allometric 
model. The LiDAR-AGB model plays the same 
role as the ground allometric model and the 
overall uncertainty of AGB estimate depends 
on how well the model was developed. Here, 
we provide the uncertainty of forest biomass 
at two levels: 1. We quantify the uncertainty 
associated with the LiDAR-AGB model using 
ground plots distributed across DRC. 2. We 
estimate the uncertainty associated with the 
MaxEnt prediction at the pixel and jurisdic-
tional scales over the entire country. 

LiDAR-AGB Model Uncertainty
LiDAR-AGB model was developed using 
ground plots distributed randomly within a 
LiDAR transect across but only in transects 

that were not limited by access or security. 
We tested for the uncertainty of the model 
using a bootstrapping (1000 times) cross-val-
idation approach with randomly selecting 
80% of data for model fits and 20% for val-
idation. The result suggests that model has 
a standard error of 52.54 Mg ha-1 at 95% 
confidence interval but remains relatively 
unbiased (-0.62 Mg ha-1) across all regions. 
The use of wood density as a weight to Li-
DAR-derived mean canopy height is contrib-
uting to reduce the bias that may have been 
introduced in the model due to variations in 
tree composition. 

Pixel-level Uncertainty 
We first evaluated the uncertainty associat-
ed with the spatial modeling of AGB using 
cross-validation (CV) approach. CV results 
from LiDAR plot-based sampling give the 
best overall prediction compared to the other 
methods, with an average RMSE of 61±1 Mg/
ha. Considering the possible existence of 
residual spatial autocorrelation, CV results 
from latitudinal sampling have a relatively 

Figure 16: Scatter plot of mapped AGB vs. field LiDAR-derived AGB values showing the validation of the national 

carbon map of DRC across forest types using field LiDAR pixels calibrated by field inventory plots. 
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match error (~50 Mg/ha), to the average spa-
tial mapping error (~70 Mg/ha), is theoretical-
ly about 100 Mg/ha, similar to what we found 
from independent field validation. 

CARBON STOCKS IN NATIONAL 
FORESTS
We report the carbon and biomass esti-
mates for each province in DRC, to provide 
baselines for future forest management 
and protection (see table below). Results 

DAR-AGB model, (2) the geolocation errors 
between field-derived LiDAR modeling and 
spatial mapping, and (3) the interpolation 
error of airborne LiDAR sampling for raster-
ization. The field-derived LiDAR-AGB model 
has an average RMSE of 51 Mg/ha, which 
then propagates to the national mapping 
with a potential sub-pixel geolocation error. 
The average sub-pixel geolocation error can 
be approximated as the nugget effect of zero 
distance in the semi-variogram analysis, and 
is roughly 50 Mg/ha as well. The interpolation 
error can be modeled using ordinary kriging. 
Under the original 2-meter resolution for Li-
DAR raster product, we found regions with 
missing ground return could have uncertain-
ty as high as 1 meters. However, the spatial 
aggregation of 2-meter products to 1-ha res-
olution makes this part of uncertainty rather 
small. Therefore, compared to other sources 
of uncertainty, LiDAR height measurements 
provides the most accurate estimation

The spatial modeling uncertainty of AGB rep-
resented by pixel level prediction error is the 

last source of uncertainty. The results show 
that majority of the AGB modeling uncertainty 
of humid tropical forests is bounded between 
50 to 90 Mg/ha. However, compared to the 
pixel values with ground-estimated AGB at 
the 1-ha plots, the uncertainty is larger (90 
Mg/ha) when compared the validation field 
plots, and about 105 Mg/ha when compared 
with an independent data set. If we assume 
different processes impacting the uncertainty 
of our AGB map are unrelated, the propaga-
tion of uncertainty from field-derived LiDAR 
AGB modeling error (~50 Mg/ha), pixel mis-

Figure 17: AGB uncertainty map showing the 

spatial variation of pixel level uncertainty from 

MaxEnt Bayesian estimation approach. The 

uncertainty at the pixel represents the RMSE of 

AGB estimation by taking into account errors from 

all sources including allometry. The uncertainty 

is overlaid on the shaded relief to highlight the 

potential impact of topography on uncertainty.
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over 9 to 10 Mha. However, the forest type is  
also important to estimating total carbon. Note 
that Lualaba, Tanganyka and Haut-Katanga all 
have 6-7 Mha of forests, comparable to the for-
est coverage in Haut-Uele and Kasai, but the 
total carbon storage is only 0.3 PgC – approx-
imately one third of the total carbon for those 
tropical forest counterparts. The total carbon 
of the entire DRC is around 23.3±0.2 PgC. Al-
though the modeling error for this total number 
is also 1%, consistent with the mean AGB es-
timates, the uncertainty of total carbon varies 
with both the mean uncertainty and the num-
ber of pixels. For example, Bas-Uele and Mon-
gala have similar estimates of mean AGB and 
the associated errors, but the forested region 
in Bas-Uele is more than double. As expect-
ed, the total carbon uncertainty in Bas-Uele is 
twice of Mongala.

between our predicted pixels44-47:

where N is the total number of pixels, ρ_ij is 
the correlation coefficient between pixels i and 
j, and it can be approximated from the normal-
ized C(h) under the assumption that spatial 
autocorrelation only changes with distance 
h. When our retrievals have little or no spatial 
autocorrelations between the predicted pix-
el-level errors, the variance of regional mean 
is simply the average of all pixel-level variance.

The total carbon estimate for each province 
is different from mean values, as it is ar-
ea-weighted. Tshopo, Tshuapa and Bas-Uele 
thus become the top 3 provinces which store 
the most terrestrial carbon, each containing 
more than 2 PgC due to its large area of trop-
ical forests. Mai-Ndombe, Equateur, Maniema 
and Sankuru also have 1.4-1.8 PgC in each 
province with a large forest coverage of 

Figure 18: Validation of the biomass map against 

all available 1-ha plots in DRC (top) and against all 

1-ha plots not used in developing the LiDAR-bio-

mass model. None of the 1-ha plots were used 

directly in the MaxEnt machine learning algorithm 

and considered as reliable test of the map pixel 

level uncertainty.

show that 4 provinces (Tshuapa, Tshopo, 
Ituri and Sankuru) have the highest mean 
AGB of more than 300 Mg/ha. The 10 oth-
er provinces (Mai-Ndombe, Equateur, 
Sud-Ubangi, Nord-Ubangi, Mongala, Bas-
Uele, Nord-Kivu, Sud-Kivu, Maniema, and 
Kasai) have mean AGB estimates around 200 
 Mg/ha. These 14 provinces possess 75% of 
the total carbon in the country. The remaining 
12 provinces have lower AGB density and to-
tal carbon than the others, and nevertheless, 
contain more than 30% of thetropical forest-
ed area. The provinces the the lowest AGB 
density are Kinshasa, Kasai Oriental, Loma-
mi and Kongo Central, which contribute less 
than 1% to the country-level carbon storage. 
At national level, the mean AGB is 236 Mg/
ha for all forested regions, with less than 1% 
average modeling error when considering 
both the pixel-based error and the covariance 
between pixels.

To assess the uncertainty of regional mean of 
carbon stored in the forests at the province 
scale, we need to account for the covariance 
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Table 1. Forest area, biomass and carbon statistics of DRC provinces. The forest area estimates are based on the 

DRC forest definition of minimum mapping area of 0.5 ha, canopy cover > 30% and forest height > 3 m. Forest 

carbon includes above ground and below ground root biomass. 

27

TECHNICAL METHODOLOGY



showing negative correlation with carbon 
density and suggesting that areas with high-
er temperature are less suitable for biomass 
accumulation. This may follow the observa-
tions that forests have an optimum range of 
temperature for CO2 uptake49,50. 

Rainfall seasonality is also well correlated 
with carbon density showing a similar nega-
tive relationship suggests that more carbon 
is stored in less seasonal forests. Interesting-
ly, among soil properties, the topsoil organic 
carbon also plays an important role in the 
carbon storage of the Congo basin, consistent 
with our findings in the tropical Amazon re-
gion51, which shows a significant negative 
effect of soil organic carbon to dominant tree 
height. The peatlands found in Congolese 
swamp forests48 can partly explain this par-
ticular relationship, showing increasing top-
soil carbon corresponding to smaller trees. 
Higher temperatures in tropical forests near 
swamp-dominated areas could also protect 
soil organic carbon from decomposition52.  
The variation in land elevation, related to 

various landscape structure, affecting incom-
ing solar radiation, hydrological features, as  
well as soil compounds, shows a positive re-
lationship with carbon density, meaning more 
forest carbon stored over complex terrains. 
This effect may also be due to the higher 
probability of forest degradation and logging  
in areas with flat terrain that could not be 
readily verified in this study. 

The swamp forests (wetlands), mainly distrib-
uted along the Congo river system, have a 
more predictable pattern related to environ-
mental variables. Results show that 66% of 
the carbon spatial variation in these forests 
can be explained by 4 variables: mean land 
elevation, land elevation variation, minimum 
temperature of coldest month, and annual 
precipitation. The most important variable, 
mean land elevation, can explain about 49% 
of the carbon variation. showing a linear in-
crease of carbon stock density with elevation 
over the range of about 50 m. Unlike ever-
green forests, swamp forests show a negative 
relationship between carbon and elevation 

ENVIRONMENTAL CONTROLS
The climate and edaphic characteristics in 
DRC may partly explain the spatial variabil-
ity of forest carbon stock. By upscaling our  
carbon density map to a quarter-degree, 
matching the spatial resolution of available 
products for climate and soil variables, we 
found weak but significant relationships 
between carbon stocks and environmen-
tal variables. Our analysis shows the most 
important environmental variables for de-
termining spatial distribution of carbon in 
evergreen forests are mean temperature of 
driest quarter, topsoil organic carbon, land 
elevation variation and rainfall seasonality. 
These 4 variables explain about 28% of the 
carbon stock variation in evergreen tropical 
forests. Although the power of explanation 
is not very strong, likely due to the hetero-
geneity of forest structure and composition, 
all 4 variables significantly regulate the dis-
tribution of carbon at least from the mean 
characteristics. The mean temperature of the 
driest quarter is the most important variable, 

Figure 19: Average relationships 
between carbon density and 
environmental variables in Evergreen 
tropical forests in DRC. Panels 
show carbon density vs. (a) mean 
temperature of driest quarter, (b) 
topsoil organic carbon, (c) land ele-
vation variation, and (d) precipitation 
seasonality. The plots show the 
relationships between mean values 
within each interval of environmental 
variables. The errorbar associated 
with carbon density is the standard 
error of mean estimation from boot-
strapping samples.
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Figure 20: Average relationships between carbon density and environmental variables in Swamp forests with (a) mean land elevation, (b) land elevation variation,  

(c) minimum temperature of coldest month, and (d) annual precipitation, and Miombo forests with (e) precipitation seasonality, (f) subsoil silt fraction, (g) mean land elevation,  

and (h) annual precipitation. 



ations of carbon density in swamp forests.
The Miombo woodlands in DRC cover mostly 
the southern part of the country. Compared 
to evergreen and wetland forests, these 
forests have much lower carbon density. As 
expected, there are distinct environmental 
variables that determine the variations of 
forest carbon in these forests. Rainfall sea-
sonality becomes the most important vari-
able, followed by subsoil silt fraction, mean 
land elevation and annual precipitation. Sur-
prisingly, no temperature variable plays an 
important role in the carbon distribution. But 
since these seasonal forests are distributed 
over a large range of elevation, we found 
that most temperature seasonality features 
are correlated strongly with precipitation 

seasonality, and mean temperature features 
are tightly correlated with mean land eleva-
tion. The soil, silt fraction, is well correlated 
with the soil nutrient availability such as the 
cation-exchange capacity, and the soil or-
ganic carbon. These soil variables occur in 
areas with lower annual precipitation. 

variation, suggesting more wetland forests 
growing on the flat terrain that allows per-
sistent inundation seasonally or over the 
entire year. The minimum temperature of 
the coldest month in wetlands is closely 
correlated with annual mean temperature, 
temperature diurnal range and annual 
range. The negative correlation with carbon 
density is consistent with what we found in 
the evergreen forests. Annual precipitation, 
though high enough, still shows a positive 
relationship with carbon density in wetland 
forests. The soil properties in these forests 
are highly correlated with each other and 
temperature variables, probably due to their 
similar geographical distribution, and there-
fore, could not significantly explain the vari-

(Above) Sunrise behind Mount Mikeno, Virunga National Park, Democratic Republic of Congo
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any probabilistic design and hence cannot be 
a rigorous estimation of the bias of the map.  
Nevertheless, this effort was helpful in under-
standing how the plot level data can be com-
pared with the map and to what extent the plot 
size and location accuracy can influence the 
estimation of errors. The results of the compar-
ison with independent ground plots from DIAF 
are summarized in the table below

The validation included data sets from Bastin 
plots that were not used in the development 
of the map and plots collected by the Japan In-
ternational Cooperation Agency (JICA). There 

were a total of 25 1-ha plots from the research 
groups distributed in DRC and 90 0.36-ha clus-
tered plots from the DIAF-JICA inventory data. 
The figure below shows the estimates of mean 
biomass from these plots using different allo-
metric models and comparison with the forest 
biomass map produced in our project. The re-
sults suggest that the overall bias of the map  
is very small (1% for Bastin plots and 3% for 
JICA plots). The bias may be partially due to the  
plot size in the case of JICA) plots, orientation 
with respect to the 100 m pixel of the map and 
the geolocation error. 

DIAF INDEPENDENT VALIDATION
The forest aboveground biomass map and un-
certainty were delivered to the national agen-
cies of DRC for reviews and validation. DIAF, 
the ministry of forestry in DRC took the respon-
sibility of estimating the uncertainty of the car-
bon map over regions were field inventory data 
are available. However, due to lack of NFI data 
in DRC, only a small number of samples with-
in the province of Mai Ndombe were selected 
to examine the quality of the map in terms of 
the overall bias in estimating carbon. The plot 
data used are not based on any systematic or 
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Figure 21: Size and shape of plots used in the validation of the national biomass map. 



 CONCLUSIONS
We developed the first national-level forest bio-
mass distribution and uncertainty assessment 
in a tropical country from systematic sampling 
of airborne LiDAR data. We also report prov-
ince-level carbon statistics, as well as AGB esti-
mates summarized by different forest types. By 
examining the environmental condition such 
as the climate and edaphic variables, we iden-
tified key climate (temperature and precipita-
tion), terrain (elevation and interquartile range) 
and soil properties contributing to spatial distri-
bution forest carbon stocks, and environmental 
variables which can differentiate forest types. 
The development of carbon estimates and the 
national map follows a verified methodology 
that defines the LiDAR sampling approach, 
conversion of LiDAR measurement to AGB and 
assessment of the uncertainty. Our results in-
dicate that the methodology can be applied to 
other tropical countries to provide cost-effec-
tive and efficient assessment of forest carbon 
storage and changes over large areas.

ACKNOWLEDGEMENTS
The authors wish to the thank the International Climate Initiative (IKI) of the German 
Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety.  
Additionally, the contribution of field plot data and expertise by Ghent University (ISOFYS 
and CaveLab), INERA-Yangambi, WWF-DRC (PARAP), le Département des Inventaires et 
Aménagement Forestier (DIAF), Forest Ressources Management (FRM); Wildlife Conser-
vation Society, Office National des Forets (ONFI), Conservation International (CI), Project 
Earth Observation for Reducing Emissions from Deforestation and forest Degradation 
(EO4REDD), Forest and Biodiversity Program of German Cooperation (PBF/GIZ), Universite 
Libre de Bruxelles (ULB), Wildlife Works Carbon (WWC), the Smithsonian Institution and 
the World Bank (WB). We also wish to acknowledge the Food and Agriculture Organization 
(FAO), the World Bank (WB) for supporting field data collection and validation efforts, and 
the dedicated pilots, engineers of Southern Mapping Company.

TECHNICAL METHODOLOGY

32

DIAF validation of the national map.
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Figure A1. Forest cover of DRC derived from LiDAR 

estimated tree height and percent tree cover at 100 m 

spatial resolution.



34

Forest Area in DRC

The quantification of the carbon stored in forests of DRC depend strongly on the precision of 
mapping forest areas. Forests in DRC are defined of covering a minimum mapping unit area of 
0.5 ha, have an average height of greater than 3 m, and tree canopy cover of more than 30%. 
These three components of definition cannot be readily mapped using the conventional remote 
sensing data and techniques. Most global and regional maps are derived from remote sensing 
data with limited to no sensitivity to forest height or tree canopy cover. However, the classification 
of the remote sensing data is often calibrated extensively with training data over areas that are 
identified as forests by experts in the country in order to produce forest cover maps that closely 
follow the national definition of forest. 

The current estimate of the national forest area is based on the FACET forest map produced by 
OSFAC using forest cover change techniques from multi-temporal Landsat ETM data from 2000 
to 2010 at 60 m spatial resolution (Potapov et al. 2012). For the FACET map, forest was defined 
as 30% or greater canopy cover for trees of 5 m or greater in height. This definition has been 
changed in recent years to 3 m threshold for tree height and a minimum mapping unit of 0.5 ha 
compatible with the national plans for REDD+ and national or jurisdictional emission reduction 
(ER) programs.

As part of CM&M program, the UCLA team has developed national level maps of forest height and 
canopy cover using the statistical sampling of high resolution LiDAR data. These maps are pro-
duced using geospatial modeling of more than 600,000 ha of height and canopy cover samples 
using Landsat, ALOS PALSAR, and SRTM imagery at 100 m spatial resolutions. Using the maps, 
we combined the 30% canopy cover and 3 m height thresholds to estimate the forest cover area 
at the national scale and for all provinces summarized in table 1. The overall difference between 
the approach and the forest definitions used in FACET and the CM&M maps results in more than 
10 million ha of forests distributed extensively along the forest-savanna boundary in southern 
provinces and degraded areas. The following table (Appendix A) summarizes differences in forest 
cover and provides the mean and total carbon stored in DRC based on the FACET map.
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Table 2. Forest area, biomass and carbon statistics of DRC provinces. Forested area is calculated by using the 

FACET forest cover map produced by OSFAC and adding all pixels associated with the intact humid tropical forests, 

secondary forests, and woodland savanna areas. FACET map is based on the national Landsat time series data 

capturing forest cover change from 2000 to 2010. The classification of Landsat data assumes areas with more than 

30% forest cover and tree height of greater than 5 m (Potapov et al. 2012).
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Equateur



Haut-Katanga
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Haut-Uele



Haut-Lomami
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Ituri



Kasai Central & Oriental

Kasai Central Kasai Oriental

APPENDIX

42

Ituri



APPENDIX

43

Kasai Oriental



Kinshasa & Kongo Central
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