

In Zusammenarbeit mit:

IMPRESSUM

Herausgeber

Stand März 2024

Koordination

Lisa-Maria Okken/WWF

WWF Deutschland

Autoren

Hauke Hermann, Lukas Emele/Öko-Institut

Kontakt Redaktion <u>lisa-maria.okken@wwf.de</u> Thomas Köberich/WWF

Design

Silke Roßbach

Bildnachweise

IMAGO/frederic (Seite 16, 19); IMAGO/Hans Blossey (Seite 12); IMAGO/Hans Guenther Oed (Seite 20); IMAGO/imageBROKER/Arnulf Hettrich (Titel); IMAGO/panama pictures (Seite 13, 14, 23); IMAGO/penofoto (Seite 15, 18); IMAGO/Jochen Tack (Seite 17); iStock/Getty-Images/David-Hajnal (Seite 11); iStock/Getty-Images/Rainer Lesniewski (Seite 3, 24); iStock/Getty-Images/Dirk Schatz (Seite 2, 6, 22); iStock/Getty-Images/stlk11 (Seite 10); WWF Deutschland/

Daniel Seiffert (Seite 4)

© 2024 WWF Deutschland, Berlin. Nachdruck, auch auszugsweise, nur mit Genehmigung des Herausgebers.

Inhalt

0	rwort
	Einleitung und Überblick
2	Methodisches Vorgehen
}	Chemieparks im Einzelnen
ļ	Kurzfristige Emissionsminderungspotenziale
;	Literatur
	Anhang

Viviane Raddatz Fachbereichsleiterin Klimaschutz und Energiepolitik

Vorwort

Kann die Chemieindustrie Klimaschutz? Die Antwort ist ganz klar: ja! Dafür müssen regulatorische Barrieren abgebaut und die Erneuerbaren Energien jetzt schleunigst ausgebaut werden. Konzepte zur klimafreundlichen Transformation des Chemiesektors gibt es schon, doch sie finden bisher zu langsam Umsetzung. Das liegt auch daran, dass bisher der Einblick in den Sektor fehlte. Wo liegen die größten Emissionsquellen in der Chemieindustrie? Und mit welchen Maßnahmen lässt sich der hohe CO₂-Ausstoß reduzieren?

In dem vorliegenden Bericht haben wir uns die "Dirty Dozen", die zwölf Chemieparks mit den höchsten Emissionen in Deutschland angeschaut. Die zwölf Schwergewichte waren insgesamt für rund 23 Millionen Tonnen CO₂ in 2022 verantwortlich. Das sind ganze drei Prozent der gesamten Treibhausgasemissionen in Deutschland oder 14 Prozent der Emissionen des Industriesektors. Deutschland hat von 2021 auf 2022 seine Treibhausgasemissionen um zwei Prozent reduziert.¹ Ein klimafreundlicher Umbau der zwölf größten Chemieparks würde also einen erheblichen Beitrag zum Klimaschutz in Deutschland leisten.

Doch die Chemieindustrie in Deutschland ist noch stark abhängig von Erdgas und Rohöl. Insbesondere die starke Erdgasabhängigkeit der Branche hat durch die gestiegenen Erdgaskosten in der Energiepreiskrise in den letzten Jahren zu Herausforderungen geführt. Das zeigt auch unser Bericht: 40 Prozent der Emissionen der Dirty Dozen stammen nicht aus den eigentlichen Produktionsprozessen, sondern aus Kraft-Wärme-Kopplungs-Anlagen (KWK-Anlagen), die zum Großteil mit Erdgas betrieben werden. Diese Emissionen lassen sich reduzieren, indem die Kraftwerke flexibilisiert werden und Strom aus Wind- oder Solarenergie direkt genutzt wird. In einem 2. Schritt sollten KWK-Anlagen durch die Direktnutzung von Strom ersetzt werden und wo die Direktnutzung nicht möglich ist, auf grünen Wasserstoff umgestellt werden.

Auch zur Produktion von grünem Wasserstoff braucht es Wind- oder Solarenergie. Es führt kein Weg am Ausbau der Erneuerbaren Energien in Deutschland vorbei, insbesondere da der Strombedarf der Chemieindustrie enorm ist. Um auch Strombedarf aus kostbaren Erneuerbaren Energien zu reduzieren, muss die Chemie auf langlebige Produkte, alternative Materialien und optimales Recycling setzen.

Die Produkte in der Chemieindustrie sind sehr divers und werden an die verschiedensten Branchen in Deutschland und ins Ausland geliefert. Ca. 20 Prozent des Absatzes der Chemieindustrie machen Kunststoffe aus. Deren Produktion basiert auf Rohöl. Mittel- und langfristig spielt der Ersatz von fossilen Rohstoffen sowie Erdöl zur stofflichen Nutzung durch grünen Wasserstoff

 $^{1\} https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland\#emissionsentwicklung$

und seine Derivate (Power-to-X Produkte) eine immer wichtigere Rolle. Die Reduzierung des Kunststoffbedarfs, die Anwendung in langlebigen Produkten und das richtige Recycling würden nicht nur der Müllverschmutzung unserer Weltmeere vorbeugen, sondern reduzieren den Bedarf an Primärrohstoffen und schützen damit das Klima. Die Potenziale der Kreislaufwirtschaft für die Transformation der Chemieindustrie haben bisher noch zu wenig Beachtung gefunden.

Deutschland kann ein wettbewerbsfähiger und attraktiver Wirtschaftsstandort bleiben. Dafür braucht es sektorspezifische Maßnahmen für die Chemieindustrie. In unserem Bericht stellen wir Maßnahmen vor, die eine Reduktion der Emissionen in der Chemie bewirken. Im Fokus stehen dabei Maßnahmen, die prioritär umgesetzt werden sollten. Darüber hinaus braucht es für eine erfolgreiche Defossilisierung der Chemieindustrie weitere mittel-bis langfristige Maßnahmen zur Emissionsreduktion:

Chemieunternehmen müssen sich fit für die Klimaneutralität machen:

· Dazu sollte gehören, dass sich Unternehmen wissenschaftlich fundierte Klima- und Umweltziele setzen (Science Based Targets) und mittel- bis langfristige Transitionspläne vorlegen.

Fossile Subventionen abbauen:

• In der letzten Reform des Europäischen Emissionshandels hat man sich in den Sektoren, die vom Grenzausgleichsmechanismus abgedeckt werden (CBAM-Sektoren) auf eine

Beendigung der kostenlosen Zuteilung ab 2034 geeinigt. Das ist zu spät. Aus WWF-Sicht hätte ein deutlich früheres Auslaufen schneller zu einem wirksamen Preissignal geführt, das Anreize zur Defossilisierung auch in der Chemie setzt. Die Abschaffung der kostenlosen Zuteilung und der daraus resultierenden Weitergabe des Preissignals würde eine Lenkungswirkung entfalten und der Industrie Planungssicherheit geben, langfristig die richtigen Investitionsentscheidungen zu treffen.

Elektrifizierung:

• Die direkte Elektrifizierung von Prozesswärme ist wesentlich für die Transformation der Chemieindustrie und leistet einen wertvollen Beitrag zur Einsparung von Erdgas. Der Strom zur Elektrifizierung sollte aus Erneuerbaren Energien stammen. Energieeffizienz sollte auch hier an erster Stelle stehen, indem z.B. die Abwärme zur Wärmegewinnung wiederverwendet wird.2

Implementierung einer Kreislaufwirtschaft:

- In der Umsetzung muss die Industrie durch Materialien und Maßnahmen, die den Ressourcenverbrauch reduzieren und die Materialeffizienz verbessern, die Kreislaufwirtschaft in der Wertschöpfungskette ermöglichen.
- Verbindliche Ressourcenziele nach dem Vorbild von Klimazielen müssen durch die Politik vereinbart werden und in einem gesetzlichen Rahmen eines Ressourcenschutzgesetzes implementiert und gemonitort werden.3

- Eine auf Circular Economy ausgerichtete Finanz- und Steuerpolitik, die Investitionen in zirkuläre Geschäftsmodelle fördert, umweltschädliche Subventionen abbaut und ressourcenintensive Produktions- und Konsumweisen fiskalisch belastet. ist dringend notwendig. Das würde insbesondere die wettbewerbsverzerrenden Vorteile für ressourcenintensive Technologien und Praktiken abbauen.
- Für den Sektor Verpackung sollte eine Verpackungsressourcensteuer, eine Pflicht zum Angebot von Unverpackt- und Mehrwegsystemen und eine Abgabe auf nicht hochgradig recyclingfähige Verpackungen eingeführt werden. Diese Instrumente entfalten ihre Wirkung vor allem, wenn sie sich gegenseitig ergänzen, und würden zur Reduktion des Ressourcenverbrauchs beitragen.

Strenge Rahmenbedingungen für den Einsatz von Carbon Capture and Utilization (CCU) für die Rohstoffbasis in der Chemieindustrie:

- Da die bekannten Kreislaufstrategien (Reduzieren, Wiederverwenden, Recyceln) voraussichtlich nicht ausreichen werden, um Klimaneutralität in der Kunststoffindustrie zu erreichen, können weitere Ansätze wie Produktion von Kunststoffen aus CO₂ (CCU) und Verwendung biotischer Rohstoffe zur Kreislaufwirtschaft im Kunststoffsektor beitragen.
- Dabei ist unbedingt eine Hierarchie zwischen den Strategien zu beachten, die sich am Energiebedarf und Landnutzungsbedarf orientieren sollte.

² https://static.agora-energiewende.de/fileadmin/Projekte/2022/2022-02 IND Climate Positive Chemistry DE/A-EW 299 Chemie im Wandel DE WEB.pdf

³ https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/Unternehmen/WWF-Modell-Deutschland-Circular-Economy-Modellierung.pdf

- Außerdem sollte eine dauerhafte Bindung des ${\rm CO_2}$ im Produkt gewährleistet werden, insbesondere da CCU ein sehr energieintensiver Prozess ist.⁴

Grüne Märkte schaffen:

• Eine nachhaltige Umstellung des öffentlichen Beschaffungswesens kann einen starken Einfluss auf den Klimaschutz, die Kreislaufwirtschaft sowie die Schaffung von grünen Leitmärkten in der Chemieindustrie haben. Die öffentliche Beschaffung allein in Deutschland umfasst ein jährliches Investitionsvolumen von 500 Milliarden Euro. Bisher entscheidet bei der Vergabe von Aufträgen jedoch noch primär das Kriterium der Wirtschaftlichkeit ohne Einbezug der wahren Umweltkosten.

Erneuerbare Energien ausbauen:

- Die Industrie muss sich weiterhin auch politisch für den Ausbau der Erneuerbaren Energien, insbesondere der Windund Solarenergie, einsetzen. Die Bundesregierung muss weitere Weichen für den schnellen, umfassenden Ausbau der Wind- und Solarenergie stellen. Das Zwei-Prozent-Flächenziel für Onshore-Windenergieanlagen nach Windenergieflächenbedarfsgesetz sollte bis Ende des Jahres 2025 erfüllt werden.
- Die zuständigen Behörden müssen personell und finanziell so ausgestattet sein, dass sie den Anstieg der Genehmigungsverfahren durch den massiven Ausbau der Erneuerbaren Energien effektiv bearbeiten können. Neben der Vereinfachung und Standardisierung von Genehmigungsverfahren bedarf es vor allem einer umfassenden Digitalisierung.

- Die Förderung für Erneuerbare Energien muss auch nach dem Kohleausstieg bis zum Jahr 2030 verlässlich aufgestellt werden, um die notwendigen Investitionen anzureizen.
 Sollte eine Umstellung auf das Fördermodell Contracts for Difference erfolgen, muss sichergestellt sein, dass Flexibilitätsanreize erhalten bleiben.
- Es bedarf attraktiver Bedingungen und eines Abbaus von Hürden für den Abschluss von Direktlieferverträgen (PPA) zwischen Betreibern von Anlagen zur Erzeugung von Strom aus Erneuerbaren Energien und der Industrie. Insbesondere für kleine und mittelständische Unternehmen gilt es, den Zugang zu PPA zu vereinfachen.
- Die Industrie ist gefordert, Flexibilitätspotenziale zu heben, um somit die Kostenvorteile in Zeiträumen, in denen viel Strom aus Erneuerbaren Energien erzeugt wird, optimal nutzen zu können. Dazu sollte beispielsweise eine Reform der Netzentgelte Anreize setzen und auf eine stärkere Flexibilisierung hinwirken. Zudem braucht es einen umfassenden Ausbau von intelligenten Messsystemen.
- Bei der Umsetzung der derzeit diskutierten Kapazitätsmechanismen ist unbedingt sicherzustellen, dass die Anlagen perspektivisch auf Wasserstoff umgerüstet werden, damit ein fossiler Lock-in beim Aufbau von Gaskraftwerken verhindert wird. Der Kapazitätsmechanismus sollte auch Speichertechnologien und Nachfrageflexibilisierung berücksichtigen.

 $^{4\} https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/CCU-Position-Wie-klimaneutral-ist-CO2-als-Rohstoff.pdf$

3,6 Mio. t CO₂ **1,4 Mio. t CO**, **INEOS/Currenta Köln** 2,1 Mio. t CO₂ **1,8 Mio. t CO**₂ Evonik Marl SKW Piesteritz Wittenberg 1.1 Mio. t CQ, 0,8 Mio. **t** CO, Currenta Krefeld Dow Olefinverbund Schkodau 1,1 Mio. t CO: 1,8 Mig. t CO₂ Currenta Leverkusei InfraLeuna Leuna 2,1 Mio. t CO₂ 0.7 Mio. t CO. **Basell Wesseling 4** 0.5 Mio. t CO₂ **5,9 Mio.** t CO₂ Hauptemissionsquellen **BASF Ludwigshafen** Kraftwerke Ammoniak Steamcracker/Grundchemikalien Abbildung 1-1: Die 12 größten Chemieparks in der Industrie ■ Wasserstoff/Synthesegas

1 Einleitung und Überblick

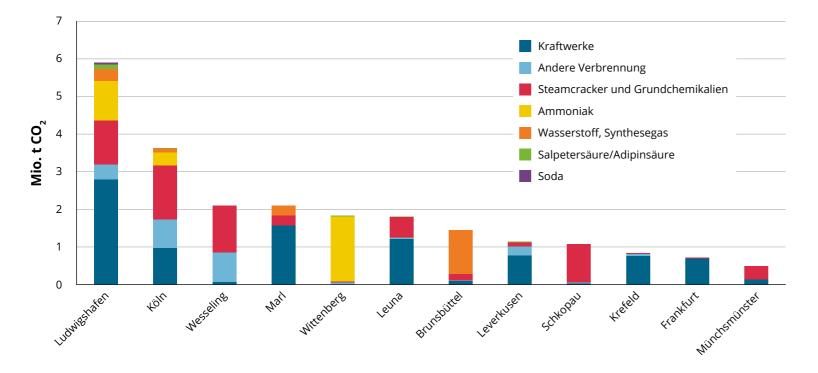
Im Juni 2023 hat der WWF seinen Bericht "Dirty Thirty – Emissionen des Industriesektors in Deutschland" veröffentlicht. Er untersucht darin die 30 $\rm CO_2$ -intensivsten industriellen Anlagen aus den Bereichen Eisen und Stahl, Zement und Chemie, die im Europäischen Emissionshandelssystem (ETS-Anlagen) verzeichnet sind. Für die Chemieindustrie allerdings gilt die Besonderheit, dass sie an einem Standort (einem Chemiepark) in der Regel mehrere ETS-Anlagen betreibt.

Aus diesem Grund haben wir die Zusammensetzung der Emissionen der größten Chemieparks einer vertiefenden Analyse unterzogen. Zugrunde gelegt wurden dafür die im Rahmen des EU-Emissionshandels veröffentlichten verifizierten Emissionen für das Jahr 2022. Berücksichtigt wurden zudem die industriellen Kraft-Wärme-Kopplungsanlagen (KWK-Anlagen), die an den jeweiligen Standorten betrieben werden.

Tabelle 1-1 gibt eine Übersicht der zwölf größten Chemieparks Deutschlands (Stand 2022). Der größte Chemiepark ist der Standort von BASF in Ludwigshafen mit 5,9 Millionen Tonnen CO_2 .⁵ Dieser Standort der BASF ist nicht nur der größte Emittent, sondern zugleich auch einer der wenigen integrierten Chemie-

⁵ Der EU-Emissionshandel umfasst in der Chemieindustrie ganz überwiegend nur CO₂-Emissionen. Bei der Adipinsäure- und Salpetersäureproduktion werden zusätzlich auch N₂O-Emissionen berichtet. Diese werden in CO₂-Äquivalente umgerechnet. Zur Vereinfachung werden in diesem Bericht die Emissionen immer in Tonnen CO₂ angegeben, auch wenn eigentlich die präzise Einheit die CO₂-Äquivalente wäre.

parks, an dem nur Anlagen eines Unternehmens betrieben werden. In den anderen Chemieparks sind in der Regel Anlagen verschiedener Unternehmen im Einsatz. Dies ist z. B. im zweitgrößten Chemiepark Deutschlands der Fall. Der Standort von INEOS/Currenta in Köln/Dormagen emittierte 2022 insgesamt 3,6 Millionen Tonnen CO₂.6


Der EU-Emissionshandel berichtet die Emissionen differenziert nach Tätigkeiten (Aktivitäten). Die Emissionen in den größten zwölf Industrieparks gehen auf industrielle KWK-Anlagen zurück (40 Prozent), gefolgt von Steamcrackern und Grundchemikalien mit 24 Prozent, Ammoniak mit 14 Prozent und Wasserstoff und Synthesegas mit zehn Prozent. Andere Verbrennungsanlagen (ohne Kraftwerke) verursachen zehn Prozent der Emissionen, Adipinsäure und Salpetersäure ein Prozent und die Herstellung von Soda weniger als ein Prozent. Das macht deutlich, dass die Herstellung der chemischen Grundstoffe wie Ethylen, Ammoniak und Wasserstoff hohe direkte Emissionen

nach sich zieht. Die Weiterverarbeitung verursacht vergleichsweise niedrige Emissionen. Die Hauptemissionsquelle in den einzelnen Industrieparks unterscheidet sich deutlich. In einigen Chemieparks dominieren die Emissionen durch KWK-Anlagen, in anderen jene durch Steamcracker oder durch die Ammoniakherstellung (vergleiche Abbildung 1-2).

Insgesamt verursachten die größten zwölf Chemieparks 23 Millionen Tonnen CO₂ im Jahr 2022. Dies sind deutlich höhere Emissionen (11,7 Millionen Tonnen CO₂) als die der 30 größten Einzelemittenten, die unter den Tätigkeiten der Chemietätigkeiten berichten (vergleiche Tabelle 3-3 in Öko-Institut, 2023), und auch höhere als die Summe der direkten Emissionen aller industriellen ETS-Tätigkeiten der Chemieindustrie (Tätigkeiten 38-44). Die addierten sich 2022 auf 14 Millionen Tonnen CO₂ (vergleiche Tabelle 3-1 in Öko-Institut, 2023). Das erklärt sich durch die hohen Emissionen der industriellen KWK-Anlagen, die im EU-Emissionshandel nicht unter den Tätigkeiten der Chemieindustrie berichtet werden (Tätigkeiten 38-44), sondern unter der Tätigkeit 20 "Verbrennungsanlagen".

Die Berichterstattung im EU-Emissionshandel umfasst nur die direkten CO₂-Emissionen der erfassten Anlagen (Scope 1). Indirekte Emissionen z. B. aus dem Strombezug (Scope 2) und Emissionen aus der Nutzung der Produkte (Scope 3, z. B. Abfallverbrennung am Ende des Lebenszyklus) werden nicht im EU-Emissionshandel berichtet und können daher in vorliegendem Bericht nicht berücksichtigt werden.

Abbildung 1-2: Größte Chemieparks in Deutschland im Jahr 2022 (Quelle: EUTL)

⁶ Vorgängerunternehmen gehen auf die Bayer AG zurück, die sich seit 2002 deutlich umstrukturiert hat und z.B. die Herstellung von Grundchemikalien in unabhängige Gesellschaften ausgliederte.

Tabelle 1-1: Größte Chemieparks in Deutschland im Jahr 2022

		BASF	INEOS/ Currenta	Basell	Evonik	SKW Piesteritz	Infra- Leuna	YARA	Currenta	Dow Olefin- verbund	Currenta	Infraserv Höchst	Basell	Summe	
Anlage	Tätig- keit	Ludwigs- hafen	Köln	Wesseling	Marl	Witten- berg	Leuna	Bruns- büttel	Lever- kusen	Schkopau	Krefeld	Frankfurt	Münchs- münster		Anteil
		Mio. t CO ₂													
Kraftwerke	20	2,80	0,97	0,07	1,57	0,00	1,22	0,10	0,78	0,03	0,76	0,70	0,13	9,13	40 %
Andere Verbrennung	20	0,39	0,76	0,79	-	0,06	0,03	0,01	0,24	0,02	0,05	0,00	0,00	2,35	10 %
Salpeter- säure/ Adipinsäure	38/39	0,11	0,00	-	-	0,02	0,01	-	0,02	-	-	-	-	0,15	1 %
Ammoniak	41	1,05	0,35	-	-	1,74	-	-	-	-	-	-	-	3,14	14 %
Steam- cracker und Grund- chemikalien	42	1,18	1,43	1,25	0,27	0,02	0,03	0,17	0,11	1,02	0,01	0,02	0,36	5,86	24 %
Wasserstoff, Synthesegas	43	0,33	0,10	-	0,26	-	0,51	1,16	-	-	-	-	-	2,37	10 %
Soda	44	0,04	-	-	-	-	-	-	-	-	-	-	-	0,04	0 %
Summe		5,89	3,62	2,10	2,10	1,83	1,80	1,44	1,14	1,07	0,83	0,71	0,49	23,03	100 %

2 Methodisches Vorgehen

Startpunkt der Analyse war die in der Studie "Dirty Thirty" – Emissionen des Industriesektors in Deutschland" dargestellte Liste der 30 größten ETS-Anlagen der Chemieindustrie. Für diese 30 ETS-Anlagen wurde durch die Autoren im European Union Transaction Log (EUTL) jeweils geprüft, ob weitere Anlagen am Standort betrieben werden. Die jeweiligen Anlagenlisten der Chemieparks sind im nachfolgenden Kapitel dargestellt. Es wurde eine "weite" Definition für Chemieparks verwendet. Auch benachbarte Industrieanlagen in einer Stadt werden im Folgenden als ein Park zusammengefasst, weil in der Regel Lieferbeziehungen zwischen benachbarten Chemieanlagen bestehen.

Zudem ging die diesem Bericht zugrunde liegende Untersuchung der Frage nach, ob es noch weitere große Chemieparks in Deutschland gibt, deren Anlagen nicht auf der Dirty-Thirty-Liste der Chemieindustrie stehen. Hier wurden die Chemieparks mit einbezogen, die mehr als 8.000 Beschäftigte aufweisen. Auf diese Weise konnten insbesondere die Currenta-Standorte (ehemals Bayer) in Leverkusen und Krefeld/Uerdingen und der Chemiepark in Frankfurt Höchst von Infraserv identifiziert werden. Der Chemiepark in Bitterfeld hat ebenfalls eine hohe Anzahl an Beschäftigten, es konnten aber keine größeren Emittenten an diesem Standort festgestellt werden.

Im folgenden Kapitel werden die Anlagen der zwölf größten Chemieparks dargestellt (sortiert nach den CO₂-Emissionen in absteigender Reihenfolge). Anlagen, die im Jahr 2022 keine Emissionen berichtet haben, sind nicht dargestellt. Durch die Rundung auf eine Nachkommastelle kann es zu Differenzen zwischen den Einzelemissionen und der Summenzeile kommen.

3 Chemieparks im Einzelnen

Tabelle 3-1: Emissionen des Chemieparks von BASF Ludwigshafen in Mio. t CO,

EUTL ID	Betreiber	Anlage	Aktivität	Emissionen
DE 1855	BASF SE	GuD-Anlage A 800	20	1,4
DE 1484	BASF SE	Heizkraftwerk GuD Süd (C200)	20	0,9
DE 201960	BASF SE	Ammoniak-Fabrik 4	41	0,8
DE 2299	BASF SE	Steamcracker 2	42	0,5
DE 1116	BASF SE	Kraftwerk Nord	20	0,4
DE 201962	BASF SE	Ammoniak-Fabrik 3	41	0,3
DE 1117	BASF SE	Dampfkessel U 160	20	0,2
DE 2298	BASF SE	Steamcracker 1	42	0,2
DE 201955	BASF SE	Wasserstoff-Anlage	43	0,2
DE 201954	BASF SE	Synthesegasanlage-ab_2013	43	0,2
DE 1692	BASF SE	Schnellstartreservekessel	20	0,1
DE 201957	BASF SE	Salpetersäure-Fabrik	38	0,1
Anlagen < 0,1 Mio. t CO ₂				
Summe				

Quelle: EUTL

Tabelle 3-1 zeigt die Emissionen des Industrieparks von BASF in Ludwigshafen, der insgesamt aus 42 Anlagen besteht. Die zwölf größten Anlagen sind in Tabelle 3-1 dargestellt, Anlagen mit Emissionen kleiner als 0,1 Mio. t CO $_2$ sind im Anhang 1 enthalten. Die größten Emittenten dort sind zwei KWK-Anlagen, gefolgt von einer Ammoniakproduktion und einem Steamcracker. Insgesamt werden an diesem Standort drei Erdgaskraftwerke betrieben.

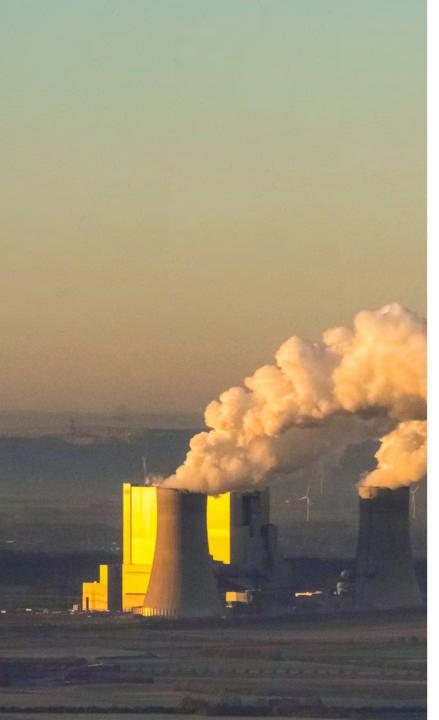


Tabelle 3-2: Emissionen des Chemieparks in Köln/Dormagen in Mio. t CO,

EUTL ID	Betreiber	Anlage	Aktivität	Emissionen
DE 1485	RWE Generation SE	Kraftwerk Dormagen	20	1,0
DE 2294	INEOS Manufacturing	Kracker 4, Geb. T21	42	0,8
DE 860	INEOS Manufacturing	Kraftwerk O10 – Kessel 3-5	20	0,7
DE 2095	INEOS Manufacturing	Kracker 5, Geb. S03	42	0,6
DE 205274	INEOS Manufacturing	Ammoniak-Anlage, Geb. O 07	41	0,4
DE 207007	AIR LIQUIDE	SMR DOR III	43	< 0,1
DE 208944	Currenta GmbH & Co. OHG	Dampfkessel Dormagen M 75	20	< 0,1
DE 202468	Currenta GmbH & Co. OHG	TVA Dormagen	20	< 0,1
DE 202346	Linde Gas	Dormagen	43	< 0,1
DE 205271	INEOS Manufacturing	Ethylenoxid-Anlage, Geb. Q 20	42	< 0,1
DE 205276	INEOS Manufacturing	Acrylnitril-Anlage III, Geb. O 08	42	< 0,1
DE 205275	INEOS Manufacturing	Acrylnitril-Anlage II, Geb. O 17	42	< 0,1
DE 205321	Covestro Deutschland AG	TAD-Anlage	42	< 0,1
DE 204322	Nippon Gases	CO-Anlage Dormagen	43	< 0,1
DE 205273	INEOS Manufacturing	Salpetersäure-Anlage, Geb. O 04	38	< 0,1
DE 209683	Currenta GmbH & Co. OHG	Dampfbesicherung Dormagen B735	20	< 0,1
DE 205983	INEOS Manufacturing	Aromaten-Anlage, Geb. W14	42	< 0,1
Summe				3,6

Tabelle 3-2 zeigt die Anlagen des Industrieparks in Köln/Dormagen. Der Industriepark liegt nördlich von Köln am Rhein und besteht aus zwei Teilen: den Anlagen von INEOS und denen auf dem Currenta-Gelände in Dormagen. In diesem Chemiepark sind verschiedene Betreiber aktiv (z. B. Covestro als Plastikhersteller). Das Kraftwerk Dormagen wird von RWE betrieben.

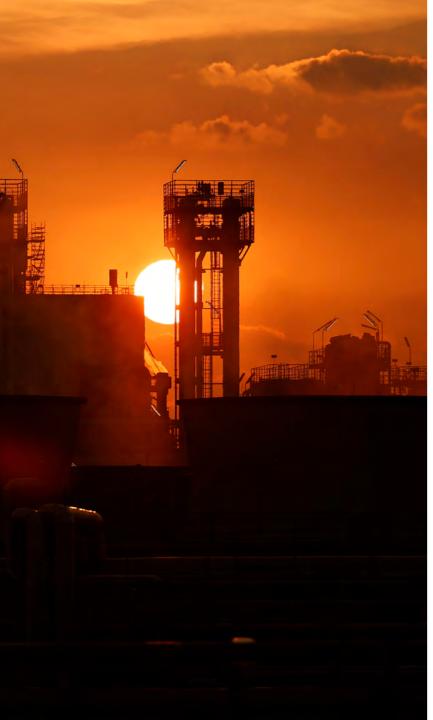


Tabelle 3-3: Emissionen des Chemieparks in Wesseling in Mio. t CO₂

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 1027	Basell Polyolefine GmbH	Ethylenanlage OM6	42	0,8
DE 202035	Basell Polyolefine GmbH	Dampfkessel Wesseling	20	0,6
DE 202537	Basell Polyolefine GmbH	Ethylenanlage OM4	42	0,3
DE 203657	Röhm GmbH	SK-MMA-Anlage	42	< 0,1
DE 203658	Basell Polyolefine GmbH	Tanklager D/E Feld und J500 Feld	20	< 0,1
DE 210185	Evonik Operations GmbH	Segment Performance Silica	20	< 0,1
DE 1418	Basell Polyolefine GmbH	Gasturbine	20	< 0,1
DE 202847	Evonik Operations GmbH	Acrolein Anlage	42	< 0,1
DE 202848	Röhm GmbH	BMA Anlage	20	< 0,1
DE 1702	Evonik Operations GmbH	Kraftwerk – Werk Wesseling	20	< 0,1
DE 209764	Basell Polyolefine GmbH	OT4 (LDPE-Anlage OT4)	42	< 0,1
DE 206013	Braskem Europe GmbH	Braskem Europe Wesseling	42	< 0,1
DE 209763	Basell Polyolefine GmbH	OL4 (HDPE-Anlage OL4)	42	< 0,1
DE 209762	Basell Polyolefine GmbH	OG2 (HDPE-Anlage OG2)	42	< 0,1
DE 210184	Basell Polyolefine GmbH	OH (HDPE-Anlage OH)	42	< 0,1
Summe				2,1

Tabelle 3-3 zeigt die Anlagen des Industrieparks in Wesseling zwischen Köln und Bonn. An diesem Standort betreibt Shell eine Raffinerie, deren Emissionen aber in Tabelle 3-3 nicht mit dargestellt sind. Die Firma Basell produziert am Standort insbesondere Plastik (z. B. Polypropylen). Die Röhm GmbH stellt am Standort z. B. Plexiglas her.



Tabelle 3-4: Emissionen des Chemieparks von Evonik in Marl in Mio. t CO,

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 1747	Evonik Operations GmbH	Kraftwerk I – Block 4 und Block 5	20	1,2
DE 201896	Evonik Operations GmbH	Wasserstoff-Anlage	43	0,2
DE 215781	Evonik Operations GmbH	Kraftwerk VI	20	0,2
DE 202878	Evonik Superabsorber	Acrylsäure-/Acrylsäuresteranlage	42	0,1
DE 207227	Evonik Operations GmbH	Kraftwerk IV	20	0,1
DE 202606	Sasol Germany GmbH	Ethylenoxid-Anlage	42	< 0,1
DE 203190	Vestolit GmbH	VC-Anlage	42	< 0,1
DE 1749	Evonik Operations GmbH	Kraftwerk III – Block 311 + 312	20	< 0,1
DE 201897	Evonik Operations GmbH	Synthesegas-Anlage	43	< 0,1
DE 217380	Evonik Operations GmbH	KW VII Marl	20	< 0,1
DE 205544	INEOS Solvents Marl	Butandiolanlage	42	< 0,1
DE 210628	Vestolit GmbH	PVC-Anlage	42	< 0,1
DE 210104	Evonik Operations GmbH	Vestamidanlage	42	< 0,1
DE 201900	Evonik Operations GmbH	Oxo-Anlage	42	< 0,1
DE 201898	Evonik Operations GmbH	Butadien-Anlage (Marl)	42	< 0,1
Summe				2,1

Die Emissionen des Evonik-Chemieparks in Marl (Tabelle 3-4) wurden in der Vergangenheit durch mit Steinkohle betriebene KWK-Anlagen dominiert. Für den Ersatz der Steinkohle-KWK-Anlagen ging 2022 ein neues Erdgaskraftwerk in Betrieb (Kraftwerk VII). Eigentlich sollte die Steinkohlenutzung zum Ende 2022 auslaufen. Wegen der Erdgaskrise werden die Steinkohleanlagen voraussichtlich jedoch erst im Frühjahr 2024 stillgelegt. Insofern dürfen in den kommenden Jahren größere Emissionsminderungen erwartet werden. Vestolit stellt am Standort in Marl PVC her.

Tabelle 3-5: Emissionen des Chemieparks in Wittenberg in Mio. t CO,

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 202455	SKW Stickstoffwerke Piesteritz GmbH	Ammoniakanlage 2	41	0,9
DE 202457	SKW Stickstoffwerke Piesteritz GmbH	Ammoniakanlage 1	41	0,9
DE 764	SKW Stickstoffwerke Piesteritz GmbH	Industriekraftwerk Wittenberg	20	< 0,1
DE 204785	Borealis Agrolinz Melamine	Melaminanlagen Piesteritz	42	< 0,1
DE 202454	SKW Stickstoffwerke Piesteritz GmbH	Salpetersäure	38	< 0,1
Summe				

In Tabelle 3-5 sind die Emissionen des Chemieparks der Stickstoffwerke Piesteritz in Wittenberg dargestellt. Die Emissionen werden von den beiden Ammoniakanlagen dominiert. Auch eine Salpetersäureproduktion wird in Wittenberg betrieben.

Tabelle 3-6: Emissionen des Chemieparks in Brunsbüttel in Mio. t CO,

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 205626	YARA Brunsbüttel GmbH	Ammoniakanlage	43	1,1
DE 206021	Sasol Germany GmbH	Ziegler, TAM, NFA	42	0,2
DE 1118	Covestro Deutschland AG	BMS-Kraftwerk SH	20	< 0,1
DE 808	Sasol Germany GmbH	Heizkraftwerk Brunsbüttel	20	< 0,1
DE 205246	Covestro Deutschland AG	Reformer BRU	43	< 0,1
Summe				

Quelle: EUTL

Tabelle 3-6 stellt die Emissionen des Chemieparks in Brunsbüttel dar. Auch hier ist der Hauptemittent die Herstellung von Ammoniak.⁷ Die Ammoniakanlage wird von YARA betrieben. Außerdem betreiben die Firmen Sasol (z. B. Wasch- und Reinigungsmittel) und Covestro (Plastik) kleinere Anlagen in Brunsbüttel.

⁷ Die Emissionen der Ammoniakanlage werden jedoch unter der Tätigkeit Wasserstoff berichtet.

Tabelle 3-7: Emissionen des Chemieparks InfraLeuna in Leuna in Mio. t CO,

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 1367	RKB Raffinerie-Kraftwerk	Raffineriekraftwerk Leuna	20	1,0
DE 206057	Linde Gas	Werk 939,Leuna, Unit 824	43	0,3
DE 202349	Linde Gas	Leuna SR 1,2	43	0,2
DE 1497	InfraLeuna GmbH	GuD-Anlage	20	0,2
DE 210167	InfraLeuna GmbH	Gasturbine 4	20	< 0,1
DE 203665	Domo Caproleuna GmbH	Cumol-Phenol-Anlage	42	< 0,1
DE 1368	InfraLeuna GmbH	GuD-Anlage Leuna	20	< 0,1
DE 203663	Domo Caproleuna GmbH	HAS-Anlage	38	< 0,1
DE 210520	Xentrys Leuna GmbH	Polymerisationsanlage	42	< 0,1
DE 210619	Dow Olefinverbund GmbH	Polyethylen-Anlage / Train 4	42	< 0,1
DE 203820	Domo Caproleuna GmbH	Schwefelsäure-Anlage	20	< 0,1
DE 210620	Dow Olefinverbund GmbH	Polyethylen-Anlage / Train 5	42	< 0,1
Summe				

Tabelle 3-7 zeigt die Emissionen des Chemieparks in Leuna. Etwas über die Hälfte der Emissionen entfallen auf das Raffinerie-kraftwerk auf dem Gelände des Chemieparks, das von einem Tochterunternehmen der STEAG betrieben wird. Das Kraftwerk versorgt auch die benachbarte Total-Raffinerie. Außerdem verursacht die Produktion von grauem Wasserstoff Emissionen in einem Umfang von 0,5 Millionen Tonnen CO₂.

Tabelle 3-8: Emissionen des Chemieparks in Leverkusen von Currenta in Mio. t CO₂

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 824	Currenta GmbH & Co. OHG	G-Kraftwerk NW 1054088 206	20	0,8
DE 202632	KRONOS TITAN GmbH	Werk Leverkusen	20	0,1
DE 202858	LANXESS Deutschland GmbH	Phthalsäureanhydrid-Betrieb (PSA)	42	< 0,1
DE 202855	LANXESS Deutschland GmbH	Eisenoxid-Betrieb	20	< 0,1
DE 828	Currenta GmbH & Co. OHG	X-Kraftwerk NW 1054088 207	20	< 0,1
DE 202854	LANXESS Deutschland GmbH	Schwefelsäure-Betrieb	20	< 0,1
DE 202856	LANXESS Deutschland GmbH	Adipinsäure-Betrieb	39	< 0,1
DE 202864	LANXESS Deutschland GmbH	Hydrier-Betrieb	42	< 0,1
DE 202861	LANXESS Deutschland GmbH	ASM-Betrieb	42	< 0,1
DE 202865	LANXESS Deutschland GmbH	TMP-Betrieb	42	< 0,1
DE 202862	LANXESS Deutschland GmbH	PHD-Betrieb	42	< 0,1
DE 202853	LANXESS Deutschland GmbH	Spaltanlage	20	< 0,1
DE 210525	Momentive Performance Materials	Silicone-Anlage	42	< 0,1
DE 202769	LANXESS Deutschland GmbH	Hexanoxidation	42	< 0,1
Summe				1,2

Im Currenta-Chemiepark in Leverkusen werden viele Anlagen von LANXESS betrieben (der ehemaligen Spezialchemie-Sparte von Bayer). Auch hier ist ein Kraftwerk der größte Emittent des Chemieparks.



Tabelle 3-9: Emissionen des Chemieparks des Dow Olefinverbundes in Böhlen/Schkopau in Mio. t CO,

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 3596	Dow Olefinverbund GmbH	Ethylenanlage (Cracker) Böhlen	42	1,0
DE 202180	Dow Olefinverbund GmbH	EDC/VC-Anlage Schkopau	42	< 0,1
DE 1461	Dow Olefinverbund GmbH	Kraftwerk I72 Schkopau	20	< 0,1
DE 202208	Dow Olefinverbund GmbH	Polyethylen-Anlage in Schkopau	20	< 0,1
DE 210606	TRINSEO Deutschland GmbH	Polystyren Anlage	42	< 0,1
DE 210639	Braskem Europe GmbH	Polypropylen-Anlage Schkopau	42	< 0,1
Summe				1,1

Ein Steamcracker in Böhlen (südlich von Leipzig) versorgt den Chemiepark in Schkopau (südlich von Halle) mit Propylen und Ethylen. Der Steamcracker ist deshalb hier aufgeführt und wird gemeinsam mit dem Chemiepark in Schkopau dargestellt. Der Chemiepark in Schkopau wird vom Braunkohlekraftwerk Schkopau mit Prozessdampf versorgt. Die Emissionen des Kraftwerks betrugen im Jahr 2022 4,4 Millionen Tonnen CO₂. Sie sind in Tabelle 3-9 aber nicht gelistet, weil die Emissionen des Kraftwerks Schkopau hauptsächlich bei der Stromproduktion entstehen. Dow stellt am Standort in Schkopau z. B. Plastik her.

Tabelle 3-10: Emissionen des Chemieparks in Krefeld Uerdingen von Currenta/Covestro in Mio. t CO₂

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 833	Currenta GmbH & Co. OHG	Kraftwerk N 230 NW 0019136 84	20	0,5
DE 809	Currenta GmbH & Co. OHG	Kraftwerk L 57 NW 0019136 83	20	0,2
DE 203612	Venator Uerdingen GmbH	Titanbetrieb Uerdingen	20	< 0,1
DE 203613	Venator Uerdingen GmbH	Spaltanlage Uerdingen	20	< 0,1
DE 205241	Covestro Deutschland AG	Formalin-Betrieb	42	< 0,1
DE 210025	Covestro Deutschland AG	Makrolon-Betrieb	42	< 0,1
DE 205322	Covestro Deutschland AG	Bisphenol-A-Betrieb	42	< 0,1
Summe				

Auch die Emissionen des Chemieparks in Krefeld-Uerdingen – mit seinen vielen Anlagen von Covestro (der ehemaligen Kunststoffsparte von Bayer) – gehen hauptsächlich auf KWK-Anlagen zurück.

Tabelle 3-11: Emissionen des Chemieparks von Infraserv Höchst in Frankfurt-Höchst in Mio. t CO,

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 1027	Infraserv GmbH & Co. Höchst KG	Heizkraftwerk – Geb. D 580	20	0,7
DE 203657	Celanese Production Germany GmbH & Co. KG	Vinylacetat-Anlage	42	< 0,1
DE 210185	Basell Polyolefine GmbH	PE-HD-Produktionsanlage	42	< 0,1
DE 202537	Grillo-Werke Aktiengesellschaft	Erzeugung von Schwefeltrioxid	20	< 0,1
Summe			0,7	

Die Emissionen des Chemieparks in Frankfurt-Höchst werden durch die Stromerzeugungsanlage dominiert (Tabelle 3-11). Die übrigen Produktionsanlagen weisen nur geringe direkte Emissionen auf.

Tabelle 3-12: Emissionen des Chemieparks von Basell in Münchsmünster in Mio. t CO₂

EUTL ID	Unternehmen	Anlage	Aktivität	Emissionen
DE 2198	Basell Polyolefine GmbH	Petrochemische Anlage	42	0,4
DE 1037	Basell Polyolefine GmbH	Kraftwerk Münchsmünster	20	0,1
DE 202874	Basell Polyolefine GmbH	HDPE Polymerisation Mümü	42	< 0,1
Summe			0,5	

Quelle: EUTL

Basell betreibt in Münchsmünster an der Donau in Bayern einen Steamcracker und Weiterverarbeitungsanlagen zur Herstellung von Plastik (Tabelle 3-12).

4 Kurzfristige Emissionsminderungspotenziale

Die KWK-Anlagen machen mit 40 Prozent den größten Anteil der Gesamtemissionen der zwölf größten Chemieparks aus. Die meisten KWK-Anlagen werden mit Erdgas betrieben, die verbliebenen Steinkohle-KWK-Anlagen werden aktuell durch Erdgas-KWK-Anlagen ersetzt.8, die über das Kraft-Wärme-Kopplungsgesetz (KWKG) gefördert werden. Dies führt kurzfristig zu Emissionsminderungen.

Bisher ist die Förderung von neuen Erdgaskraftwerken im Rahmen des KWKG bis 2026 befristet. Diese Förderung fossiler KWK-Anlagen sollte beendet und nicht verlängert werden. Neue Anlagen sollten im Rahmen der Kraftwerksstrategie errichtet werden und eine klare Perspektive auf die Umrüstung auf Wasserstoff haben. Denn um den Lock-in in fossile Grundlasterzeugung zu verhindern, ist im Hinblick auf Treibhausgasneutralität eine Förderung von erdgasbetriebenen KWK-Anlagen über das KWKG nicht mehr sinnvoll.

Gleichzeitig ist es sehr wichtig, dass die Betreiber ihre (Erdgas-) KWK-Anlagen flexibilisieren, die bisher in der Grundlast betrieben wurden. Nur so kann sichergestellt werden, dass bei hohen Anteilen Erneuerbarer Energien kein erneuerbarer Strom verdrängt wird. Dafür sind alternative Dampferzeugungskapazitäten sinnvoll (elektrische Dampferzeuger, Wärmepumpen, Erdgasreservedampferzeuger), um die Wärmeproduktion von der Stromproduktion entkoppeln zu können und erneuerbaren Strom bei hohen EE-Anteilen nutzen zu können. Zudem ist die Überarbeitung des Strommarktdesigns notwendig, um die industriellen KWK-Anlagen wie auch die Stromnachfrage der industriellen Produktionsprozesse zu flexibilisieren. Bisher verhindern die Netzentgelte eine Flexibilisierung, weil flexible Verbraucher:innen durch hohe Leistungspreise bestraft werden. Daher sollte der§ 19 der Stromnetzentgeltverordnung (Strom-NEV) so umgestaltet werden, dass er eine Flexibilisierung der Anlagen ermöglicht.

In vielen Chemieparks werden Steamcracker betrieben, bei denen durch Prozesswärme hohe direkte Emissionen entstehen. Durch eine Elektrifizierung des Steamcrackers lassen sich diese Emissionen vermeiden. Auch hier sollte darauf geachtet werden, dass diese neuen Stromverbraucher idealerweise flexibel betrieben werden.

Die Wasserstofferzeugung und die Weiterverarbeitung zu Ammoniak spielt in vielen Chemieparks eine große Rolle. Bisher handelt es sich bei diesem Wasserstoff in der Regel um grauen Wasserstoff. Wegen der hohen spezifischen Emissionsminderungen, die möglich sind, wenn grauer Wasserstoff ersetzt wird.

sollte grüner Wasserstoff hier prioritär eingesetzt werden (vergleiche Liebreich [2023] zur Einsatzreihenfolge von grünem Wasserstoff). Weil Ammoniak deutlich einfacher zu transportieren ist als Wasserstoff, werden die ersten Wasserstoffimporte insbesondere in Form von Ammoniak erfolgen. Um unnötige Umwandlungsverluste zu vermeiden, sollte importiertes Ammoniak prioritär eingesetzt werden, um die Emissionen der heimischen Ammoniakproduktion zu reduzieren. Grünes Ammoniak sollte nicht unnötig in andere Energieträger umgewandelt werden.

Im Rahmen von CCU werden CO₂ und grüner Wasserstoff genutzt, um daraus Kohlenwasserstoffe herzustellen. Solange die verfügbare Menge an grünem Wasserstoff noch begrenzt ist, sollte dieser nicht für CCU genutzt werden. Denn oft sind höhere Emissionsminderungen möglich, wenn der grüne Wasserstoff prioritär dazu genutzt wird, die Produktion von grauem Wasserstoff zu ersetzen oder um fossile Ammoniakproduktion zu substituieren. Vermieden werden sollte eine temporäre Einbindung von CO₂ in kurzlebige Produkte (z. B. in Einwegplastik) oder Treibstoffe. "Kurzlebig" bedeutet in diesem Zusammenhang, dass das CO₂ nach der Nutzung der Produkte z. B. bei der Abfallverbrennung oder bei der Verbrennung der Treibstoffe wieder freigesetzt wird. Besser ist es, das

⁸ Jedoch mit folgender Ausnahme: Der Chemiepark in Schkopau wird durch ein Braunkohlekraftwerk mit Dampf versorgt. Das Kraftwerk wird durch das Kohleverstromungsbeendigungsgesetz spätestens Ende 2034 stillgelegt. Hier bestehen jedoch noch keine Planungen für einen klimafreundlichen Ersatz der Dampfversorgung.

CO₂ erst gar nicht zu produzieren oder es – falls sich Restemissionen nicht vermeiden lassen – technisch abzuscheiden und dauerhaft einzuspeichern (CCS).

Eine CO₂-Bepreisung setzt Anreize zur Reduktion der Emissionen aus der Plastikverbrennung. Dies geschieht durch Vermeidung von Abfällen, den Einsatz von langlebigen Produkten und Recycling. In Deutschland werden die Emissionen aus der Abfallverbrennung ab dem 01.01.2024 vom nationalen Brennstoffemissionshandel erfasst (siehe § 7 (2) BEHG/Brennstoffemissionshandelsgesetz). Ab 2027 startet ein neues europäisches Emissionshandelssystem, der ETS-2. Dieser erfasst jedoch die Abfallverbrennung nicht. Vielmehr sollen ab 2028 die CO₂-Emissionen der Abfallverbrennung in den bestehenden ETS-1 (für Kraftwerke und Industrieanlagen) aufgenommen werden. Die Bundesregierung sollte darauf achten, dass sich beim Übergang vom nationalen Brennstoffemissionshandel zum ETS-2 insbesondere im Jahr 2027 keine Regelungslücke bei der Abfallverbrennung auftut.

5 Literatur

European Commission – European Union Transaction Log (EUTL):

Verifizierte Emissionen 2022, online verfügbar climate.ec.europa.eu/document/download/8f79885d-c567-4db2-9711-71ee8a29a037_en?filename= policy_ets_registry_verified_emissions_2022_en_1.xlsx, Stand Mai 2023.

Liebreich (2023), The Clean Hydrogen Ladder,

online verfügbar: www.liebreich.com/the-cleanhydrogen-ladder-now-updated-to-v4-1/, zuletzt geprüft am 20.11.2023

Öko-Institut (2023) - Dirty Thirty:

Emissionen des Industriesektors in Deutschland, online verfügbar: www.wwf.de/fileadmin/fm-wwf/ Publikationen-PDF/Klima/WWF-DirtyThirty-Emissionen-Industrie.pdf, zuletzt geprüft am 20.11.2023

6 Anhang

Ergänzung zur Tabelle 3-1: Emissionen des Chemieparks von BASF Ludwigshafen in Mio. t CO₂

EUTL ID	Betreiber	Anlage	Aktivität	Emissionen
DE 201964	BASF SE	Ethylenoxid-Fabrik	42	< 0,1
DE 201998	BASF SE	Acrylmonomere Nord	42	< 0,1
DE 211198	BASF SE	Acetylenanlage Neu	42	< 0,1
DE 201969	BASF SE	Acrylsäure-Fabrik II	42	< 0,1
DE 201938	BASF SE	Schwefelsäure-Fabrik	20	< 0,1
DE 202007	BASF SE	Natriumcarboxylat/Soda-Anlage	44	< 0,1
DE 201968	BASF SE	Phthalsäureanhydrid-Fabrik	42	< 0,1
DE 201963	BASF SE	Styrol-Fabrik	42	< 0,1
DE 202004	BASF SE	Aromaten-Anlage	42	< 0,1
DE 201997	BASF SE	Propylenoxid-Fabrik	42	< 0,1
DE 202003	BASF SE	Melaminfabrik-HP3-Teil	42	< 0,1
DE 201967	BASF SE	Formaldehyd-Fabrik	42	< 0,1
DE 202005	BASF SE	Neopentylglykol (NPG)-Anlage	42	< 0,1
DE 209946	BASF SE	Polystyrol-Fabrik	42	< 0,1
DE 209949	BASF SE	Ultramid-A-Fabrik II	42	< 0,1
DE 209950	BASF SE	Ultramid-A-Fabrik III	42	< 0,1
DE 201952	BASF SE	Spaltschwefelsäure-Fabrik	20	< 0,1
DE 210164	BASF SE	PAV-Fabrik	42	< 0,1
DE 209948	BASF SE	Styropor-Fabrik	42	< 0,1

EUTL ID	Betreiber	Anlage	Aktivität	Emissionen
DE 209951	BASF SE	Ultramid-B-Fabrik l	42	< 0,1
DE 209947	BASF SE	Neopor-Fabrik	42	< 0,1
DE 210006	BASF SE	PE-Wachs-Fabrik	42	< 0,1
DE 209952	BASF SE	Ultramid-B-Fabrik II	42	< 0,1
DE 201996	BASF SE	Butyl-Fabrik	42	< 0,1
DE 201972	BASF SE	Methanol-Fabrik	42	< 0,1
DE 202008	BASF SE	Salmiak-Fabrik	44	< 0,1
DE 202001	BASF SE	Lactam-Fabrik	42	< 0,1
DE 201995	BASF SE	Nonyl-Fabrik	42	< 0,1
DE 201966	BASF SE	Methacrylsäure-Fabrik	42	< 0,1
DE 201971	BASF SE	Propionsäure-Fabrik	42	< 0,1
Summe			0,6	

Mehr WWF-Wissen in unserer App. Jetzt herunterladen!

iOS

Android

Auch über einen Browser erreichbar.

Unser Ziel

Wir wollen die weltweite Zerstörung der Natur und Umwelt stoppen und eine Zukunft gestalten, in der Mensch und Natur in Einklang miteinander leben.

WWF Deutschland Reinhardtstraße 18 | 10117 Berlin Tel.: +49 30 311777-700

info@wwf.de | wwf.de