

Ziele des Vorhabens

Ziel I: Abschätzung der THG-Emissionen

- Bau der Infrastruktur: Pipelines,
 Kesselwagen und Netzanschlüsse
- Betrieb: CO₂-Abscheidung, Transport und Verpressung

Ziel II: Kartendarstellung der möglichen zukünftigen CO₂-Infrastruktur

Startpunkt | Die Studie des Vereins Deutscher Zementwerke (VDZ)

Der Startpunkt Die VDZ-Studie im Überblick

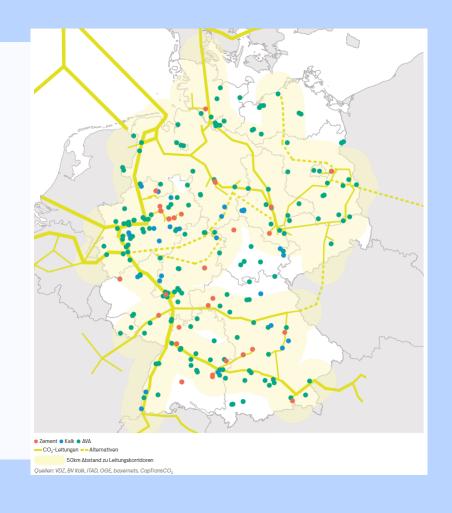
- Zementindustrie steht vor der Herausforderung, die prozessbedingten CO₂-Emissionen mit dem Zielbild der Klimaneutralität in Einklang zu bringen
- Studie modelliert ein mögliches CO₂-Netz
 - Fokus dabei auf Emittenten
 - CCU wird bei der Mengenbetrachtung nicht berücksichtigt (CO₂ kann also nicht nahe der Emissionsquelle verwendet werden)
- Zwei Szenarien
 - Klimaneutralität 2040 –
 keine ETS-Zertifikate mehr ab 2040; schneller Hochlauf CCS
 - Klimaneutralität 2045 –
 verzögerter Aufbau des Pipelinenetzes

Startpunkt: VDZ-StudieBetrachtete Emittenten

In der Studie betrachtete CO₂-Emittenten

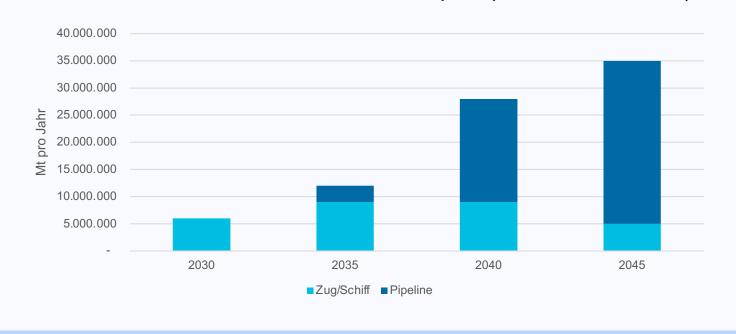
- Zementwerke
- Kalkwerke
- Müllverbrennungsanlagen (MVA)

Dies sind "Hard to abate"-Prozesse, die im Einklang mit dem Großteil der Klimaneutralitätsstudien stehen.



Startpunkt: VDZ-Studie

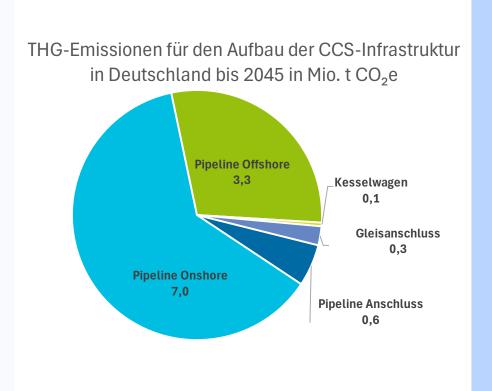
Produktionsmengen u. resultierende CO₂-Emissionen sowie Trassenbildung


Annahmen in der Studie

- Sinkende Klinkerproduktion
- Zementproduktion geht minimal zurück
- Kalk hat konstante Produktionsmengen
- Müll ITAT: konstante Abfallmengen
 - Abscheidung nicht bei allen MVA: nur zwei Drittel mit Abscheidung.
 Mit Emissionsfaktor 0,5. Über den Sektor klimaneutral.
- Startpunkt geplante Pipeline und Hub-Projekte sowie bestehende Erdgastrassen
- → 80–90 % der Trassenverläufe auf dieser Basis

Der Startpunkt: VDZ-Studie | Ergebnisse für KN2045

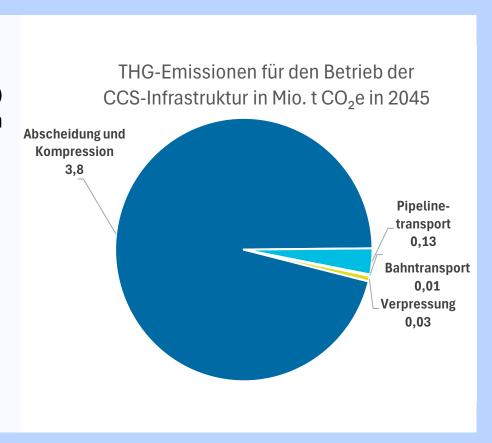
Leitungslänge: ca. 4.800 km in 2045 (ohne Zubringerleitungen)
Jährlich ca. 35 Mio. tonnen CO₂ Abtransport (Szenario KN2045)



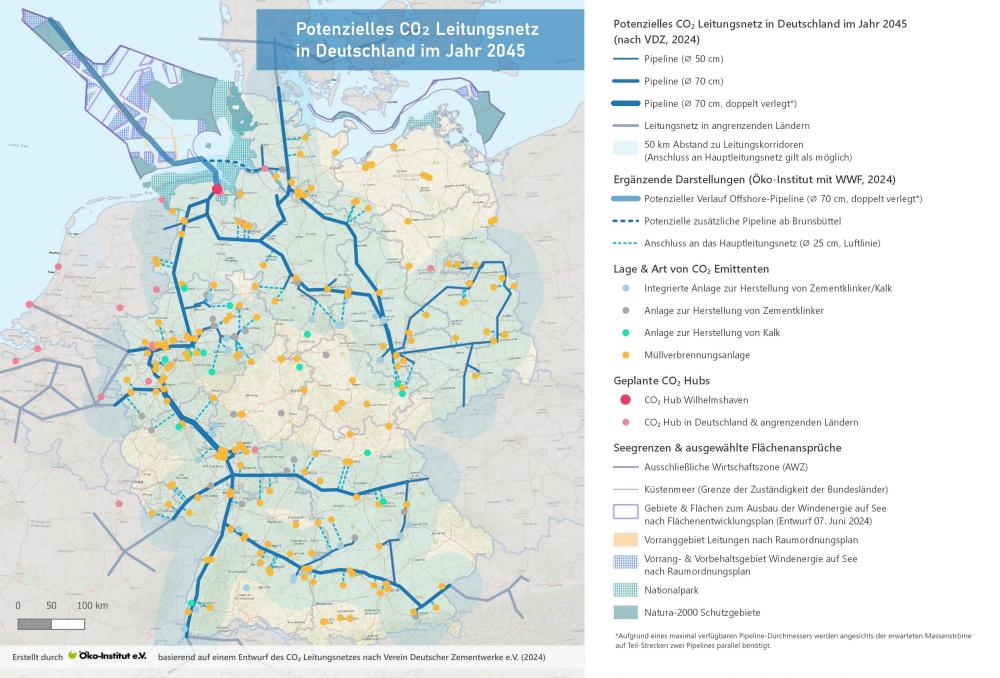
Zentrale Ergebnisse der Treibhausgasbilanz des Aufbaus und Betriebs einer CO₂-Infrastruktur in Deutschland

THG-Emissionen durch den Bau der Infrastruktur

Der Bau der Pipeline-Infrastruktur einschließlich der Anschlüsse (zwischen Emittenten und Fernleitungen) und einer doppelt verlegten Offshore-Pipeline nach Norwegen (Bergen) verursacht **insgesamt** einmalig etwa zwischen **8 und 11 Mio. t CO**₂**e**, je nachdem wie erfolgreich die Dekarbonisierung der Stahlindustrie ist.


Dies steht im Verhältnis zu einem jährlichen Abtransport von bis zu 35 Mio. tonnen CO₂.

THG-Emissionen durch den Betrieb der Infrastruktur


Insgesamt dominieren die Emissionen aus dem Betrieb. Das gilt insbesondere für Emissionen aus Abscheidung und Kompression, die mit bis zu **3,8 Mio. t CO₂e pro Jahr** (in 2045) deutlich vor dem Betrieb der Pipelines mit 0,1 Mio. t CO₂e, dem CO₂-Transport auf der Schiene mit 0,01 Mio. t CO₂e und der Verpressung mit 0,03 Mio. Tonnen CO₂e pro Jahr liegen.

Werden die erneuerbaren Strom-Erzeugungsanlagen zukünftig weniger CO₂-intensiv produziert und die CO₂-Emissionen der Stromvorkette um 50 % reduziert, würden diese jährlichen Emissionen aus der Abscheidung und Kompression immer noch 2,4 Mio. t CO₂e betragen.

Detailergebnisse | Karten

BSH - Bundesamt für Seeschifffahrt und Hydrologie (2024): 07.06.2024 Entwurf Flächenentwicklungsplan und Umweltberichte; BSH (2021): Raumordnungsplan 2021; BSH (2020): Seegrenzen der Bundesrepublik Deutschland; BfN - Bundesamt für Naturschutz (2024): Schutzgebiete in Deutschland; EEA - European Environment Agency (2023): Industrial Reporting under the Industrial Emissions Directive 2010/75/EU and European Pollutant Release and Transfer Register Regulation (EC) No 166/2006 - ver. 10.0 Dec 2023; Esri et al. (2017): World Street Map - Map Server; JRC - European Commission, Joint Research Centre (2024): The future CO₂ transport network of Europe; VDZ - Verein Deutscher Zementwerke (2024): Anforderungen an eine CO₂-Infrastruktur in Deutschland

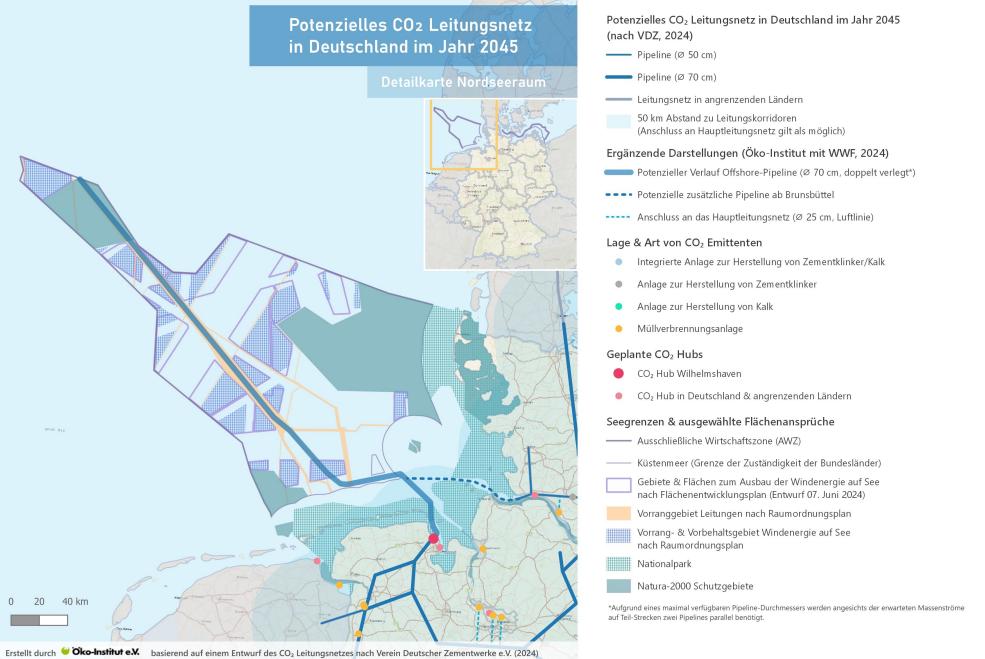
Datenbasis |

Übersichts- und Detailkarten CO₂-Leitungsnetz in Deutschland im Jahr 2045

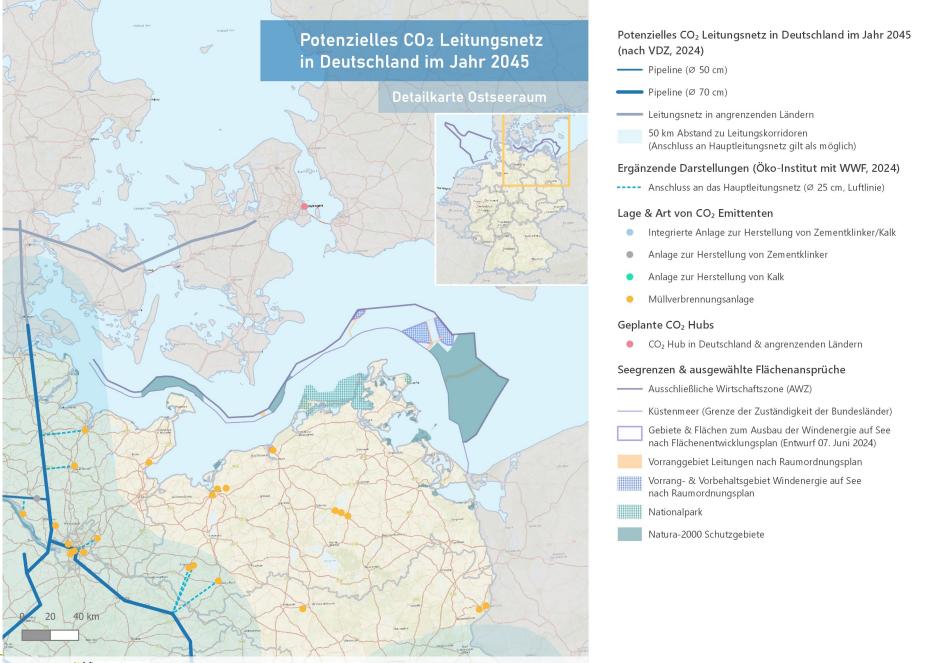
Datenbasis der Kartendarstellungen

• CO ₂ -Hauptleitungsnetz <u>VDZ – Verein Deutscher Zementwerke (2024)</u>

CCS-Terminals
 JRC – Joint Research Center (European Commission) (2024)


Raumordnungsplan
 BSH – Bundesamt für Seeschifffahrt und Hydrographie (2021)

Flächenentwicklungsplan
 BSH (2024) (aktueller Entwurf des 7. Juni 2024)


Schutzgebiete <u>BfN – Bundesamt für Naturschutz (2024)</u>

• Seegrenzen <u>BSH (2020)</u>

Öko-Institut (2024): THG-Emissionen durch den Aufbau und Betrieb einer CO₂-Infrastruktur

Datenbasis |

Erstellt durch **Oko-Institut e.V.** basierend auf einem Entwurf des CO₂ Leitungsnetzes nach Verein Deutscher Zementwerke e.V. (2024)

Datenbasis |

BSH- Bundesamt für Seeschifffahrt und Hydrologie (2024); 07,06.2024 Entwurf Flächenentwicklungsplan und Umweltberichte: BSH (2021); Raumordnungsplan 2021; BSH (2020): Seegrenzen der Bundesrepublik Deutschland; BfN - Bundesamt für Naturschutz (2024): Schutzgebiete in Deutschland; EEA - European Environment Agency (2023): Industrial Reporting under the Industrial Emissions Directive 2010/75/EU and European Pollutant Release and Transfer Register Regulation (EC) No 166/2006 - ver. 10.0 Dec 2023; Esri et al. (2017): World Street Map - Map Server; JRC - European Commission, Joint Research Centre (2024): The future CO₂ transport network of Europe, VDZ - Verein Deutscher Zementwerke (2024): Anforderungen an eine CO₂-Infrastruktur in Deutschland

Übersichts- und Detailkarten CO₂-Leitungsnetz in Deutschland im Jahr 2045

Inhaltliche Ergänzungen und Anmerkungen

- Schematische Pipeline-Anschlüsse von CO₂-Emittenten mit einer maximalen Entfernung von 50 km zum CO₂-Hauptleitungsnetz (Luftlinie) (zusätzlich ≈ 3.000 km)
- Potenzielle Offshore-Pipeline-Verbindung ab Brunsbüttel (nicht in VDZ-Studie abgebildet)
- Alternativer Routenverlauf der Offshore-Pipelines im Nordseeraum, um Konflikte mit anderen, exklusiven Nutzungsformen (Naturschutz, Windausbaugebiete) in der AWZ zu vermeiden

Keep in mind: Karten sind schematische Darstellungen der Welt

Die dargestellten Inhalte sind z.T. in ihrer Form stark vereinfacht. Zudem zeigen sie potenzielle Routen, deren genaue Ausgestaltung von wirtschaftlichen und politischen Prozessen abhängt.

Abschätzung der THG-Emissionen durch Aufbau und Betrieb einer CO₂-Infrastruktur in Deutschland

Vorgehen der Abschätzung und methodische Hinweise

Vorgehen

- Mengengerüst-Erstellung (Pipelines, CO₂-Aufkommen, Gleisanschlüsse, Energieverbrauch)
- Ableitung von Emissionsfaktoren für Infrastruktur, Strom, Prozesswärme
- Verknüpfung Mengengerüst mit Emissionsfaktoren (Bau: kumulierte Emissionen, Betrieb: jährliche Emissionen)

Hinweise zur Interpretation

- Orientierende Stoffstromanalyse (keine vollständige Ökobilanz)
- Nutzung aktueller Materialvorketten (keine zukünftige CO₂-Reduktion eingerechnet)
- Teil der Betrachtungen: Bau der Pipelines, Schienennetzanschlüsse und Kesselwagen
- Nicht betrachtet: Bau der Anlagen für Abscheidung, Verpressung, Zwischenspeicherung, Konditionierung, Verladung und Pumpstationen

Weitere methodische Hinweise

- Betrachtung nur fossiler CO₂-Mengen (VDZ-Szenario), DACCS und Transit könnten höheren Infrastrukturbedarf bedeuten
- Keine Recycling-Gutschriften am Lebensende (Cut-off-Systemmodell)

Ausbauszenario für die CCS-Infrastruktur

- Das Szenario basiert auf dem KN2045-Szenario aus der VDZ-Studie.
- Die Pipelinelängen, Anzahl der Kesselwagen und Gleisanschlüsse in den Stützjahren werden auf Basis des CO₂-Aufkommens und der Länge des Gesamtnetzes geschätzt.
- Für die Offshore-Pipeline nach Bergen werden für das Jahr 2045 zwei parallele Stränge zugrunde gelegt, um die Kapazität zu gewährleisten und die Robustheit gegenüber Störereignissen zu erhöhen.

Länge des Pipelinenetzes in km im Ausbauszenario

	2030	2035	2040	2045
Pipeline-Anschluss	0	198	1.980	3.127
Pipeline Onshore (DN 500)	0	94	942	1.487
Pipeline Onshore (DN 700)	0	184	1.838	2.903
Pipeline Offshore (DN 700)	0	932	932	1.904

Geschätzte THG-Emissionen aus dem Bau der Infrastruktur

• Insgesamt betragen die **akkumulierten THG-Emissionen** durch den Bau der Infrastruktur bis zum Jahr 2045 rund 11 Mio. t CO₂e.

Akkumulierte THG-Emissionen in Mio. t CO2e

	2030	2035	2040	2045
Pipeline-Anschluss	0,0	0,04	0,38	0,61
Pipeline Onshore (DN 500)	0,0	0,11	1,14	1,81
Pipeline Onshore (DN 700)	0,0	0,33	3,27	5,16
Pipeline Offshore (DN 700)	0,0	1,60	1,60	3,27
Kesselwagen	0,04	0,05	0,05	0,05
Gleisanschluss	0,18	0,27	0,27	0,27
Insgesamt	0,2	2,4	6,7	11,2

Geschätzte THG-Emissionen aus dem Betrieb

• Insgesamt betragen die THG-Emissionen aus dem Betrieb im Jahr 2045 rund 3,9 Mio. t CO₂e.

THG-Emissionen in Mio. t CO₂e je Jahr

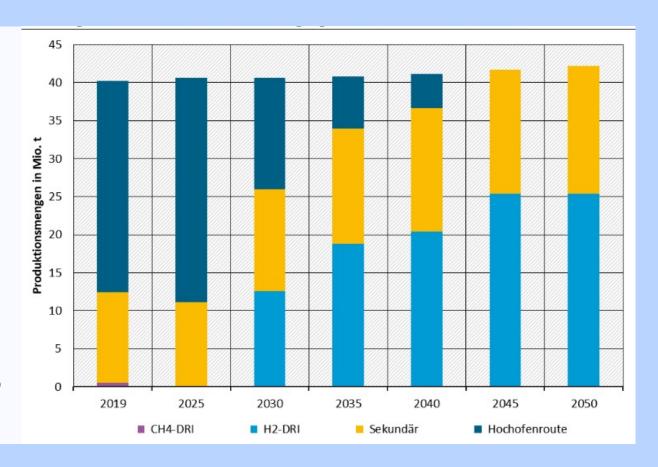
	2030	2035	2040	2045
Abscheidung und Kompression	1,08	1,58	2,99	3,76
Pipelinetransport	0,01	0,04	0,09	0,13
Bahntransport	0,013	0,015	0,012	0,007
Verpressung	0,005	0,009	0,021	0,026
Summe	1,11	1,64	3,12	3,92

Exkurs | Scopes einer CO₂-Bilanz im GHG Protocol

	Scope 1: direkte Emissionen	Scope 2: eingekaufte Energie	Scope 3: indirekte Emissionen
Bau	z.B. Diesel für Transporte, Baumaschienen, Schiffsbetrieb Bau	z.B. Strom für Baustellenbetrieb	z.B. Materialvorketten, Materialverarbeitung, Vorketten Stromerzeugung (Kraftwerksbau, Kohletransport)
Betrieb		z.B. Strom Abscheidung & Transporte	z.B. Vorketten Stromerzeugung (Kraftwerksbau, Kohletransport)

Relevanz der direkten betrieblichen Emissionen nimmt ab

- Mit steigendem Anteil erneuerbarer Energien (EE) am deutschen Strommix entfällt ein wachsender Teil der Emissionen auf die sogenannte Scope-3-Vorkette der Erzeugungsanlagen.
- Wenn neue EE-Anlagen in Zukunft sauberer produziert werden, können die THG-Emissionen aus dem Betrieb der CCS-Infrastruktur geringer ausfallen.


THG-Emissionen in Mio. t CO₂e je Jahr

		2030	2035	2040	2045
Abscheidung und Kompression	Insgesamt	1,08	1,58	2,99	3,76
	davon Scope 3	0,51	0,96	2,11	2,72
Pipelinetransport	Insgesamt	0,01	0,04	0,09	0,13
	davon Scope 3	0,01	0,03	0,07	0,09
Bahntransport	Insgesamt	0,013	0,015	0,012	0,007
	davon Scope 3	0,006	0,009	0,008	0,005

Sensitivitätsbetrachtung

Einfluss der Dekarbonisierung der Stahlindustrie auf die Ergebnisse

- In dieser Sensitivität wird der Einfluss der Dekarbonisierung der Stahlindustrie geschätzt. Vereinfachend werden folgende Annahmen getroffen:
 - H₂-DRI-Stahl verursacht keine THG-Emissionen (Wasserstoffvorkette und Extraktion/Transport unberücksichtigt). Sandback-Studie: "grüner" H₂-Stahl: 0,05 t CO₂e/t Stahl; best available Hochofenstahl 1,64 t CO₂e/t Stahl (97 % Minderung)
 - Infrastrukturaufbau folgt linearem Pfad zwischen den Stützjahren
 - Anteil von DRI-Stahl entspricht dem MMS-Szenario aus dem Projektionsbericht für Deutschland 2023

"Grüner" Stahl kann THG-Emissionen deutlich reduzieren

- Annahme zur Transformation der Stahlindustrie hat große Auswirkung auf das Ergebnis.
- Die gesamten akkumulierten THG-Emissionen sind in diesem Fall mit rund 7,6 Mio. t CO₂e um etwa ein Drittel niedriger.
- Aber: Geschwindigkeit der Transformation der Stahlindustrie ist unsicher und muss international erfolgen.

Akkumulierte THG-Emissionen in Mio. t CO2e

	2030	2035	2040	2045
Pipeline-Anschluss	0	0,03	0,3	0,4
Pipeline Onshore (DN 500)	0	0,09	0,9	1,3
Pipeline Onshore (DN 700)	0	0,3	2,4	3,6
Pipeline Offshore (DN 700)	0	1,2	1,2	2,3
Insgesamt	0	1,6	4,7	7,6

Hintergrund und methodisches Vorgehen

Strom-Emissionsfaktoren für den Betrieb

- Datengrundlage: Ergebnisse des PowerFlex/ELIAS-Modells des Öko-Instituts für das MMS-Szenario des Projektionsberichts für Deutschland 2023
- Ergänzt um Emissionen aus der Vorkette (Energiebereitstellung, Materialaufwendungen) von Ecolnvent entsprechend den Anteilen an der Nettostromerzeugung der verschiedenen Anlagentypen. Diese Faktoren sind statisch, d. h., sie bleiben über die Zeit konstant!
- Bahnstrom wird mit dem nationalen Strommix bilanziert.

Emissionsfaktor für Strom in g CO₂e pro kWh

	2030	2035	2040	2045
Direkte THG-Emissionen (Scope 1/2)	92	50	31	29
Indirekte THG-Emissionen (Scope 3)	83	78	73	76
Gesamte THG-Emissionen (Scope 1–3)	175	128	104	105

Prozesswärme-Emissionsfaktoren für den Betrieb

• **Annahme:** Die für die neuartige Technologie der Abscheidung benötigte Prozesswärme wird mittels neuer emissionsarmer Ansätze bereitgestellt (50 % elektrische Direktheizung, 50 % Großwärmepumpen mit Wirkungsgrad von 250 %).

Emissionsfaktor für Prozesswärme in g CO₂e pro MJ

	2030	2035	2040	2045
Direkte THG-Emissionen (Scope 1/2)	18	10	6	6
Indirekte THG-Emissionen (Scope 3)	16	15	14	15
Gesamte THG-Emissionen (Scope 1–3)	34	25	20	20

Bau der CO₂-Pipelines

Hintergrund

- CO₂ wird im Ferntransport in der dichten Phase in Pipelines transportiert werden. Dafür ist ein höherer Druck als in Erdgaspipelines erforderlich, somit größere Wandstärken und mehr Stahl.
- Der Massenstrom ist hingegen höher, weshalb kleinere Pipelinedurchmesser gewählt werden können (Nimtz 2016).
- Für Deutschland wird für den Ferntransport von einer Ausführung von bis zu DN 700 ausgegangen.

Vorgehen bei der Bilanzierung

- Herleitung anhand Ecolnvent-Ökobilanzdatensätzen zum Bau von Erdgaspipelines:
 - Pipeline construction, natural gas, long distance (high capacity offshore; high capacity onshore; low capacity onshore)
 - Pipeline, natural gas, high pressure distribution network (Netzanschluss)
- Anpassen der Inputs an Stahl, Stahlbearbeitung und Beton anhand der neu gewählten Durchmesser und Wandstärken (bei Anschluss auch Polytehylen)

Annahmen zu den Pipelines und hergeleitete Emissionsfaktoren

		Anschluss	Onshore (DN 500)	Onshore (DN 700)	Offshore (DN 700)
Eigenschaften					
Durchmesser	mm	250	500	700	700
Wandstärke Stahl	mm	10	25	30	30
Wandstärke Beton	mm				100
Nennmassenstrom	Mt/a	1	7	20	20
Druck	bar	50	150	150	150
Materialverbrauch					
Beton	t/km				553
Stahl	t/km	60	295	499	499
THG-Emissionen	t CO₂e/km	194	1.215	1.779	1.717
davon Stahl	%	71 %	56 %	65 %	67 %

Quelle: eigene Annahmen und Berechnung auf Basis von Ecolnvent-Datensätzen zu Erdgaspipelines

Hintergrund Kesselwagen

- Ein Beispiel für einen existierenden Kesselwagen ist der von VTG, (28,3 t Eigengewicht, Volumen ca. 62 m³, 20 mm PUR-Hartschaum-Isolierung, Länge 14,4 m) (VTG 2024).
- Existierende Verfahren sind jedoch für den Schienentransport großer Mengen CO₂ zu langsam bei der Befüllung, weshalb neue Verfahren/Kesselwagen entwickelt werden müssen.
- Nimtz (2016) nennt eine Kapazität von bis zu 1.000 t CO₂ für einen Zug, VDZ (2024) gibt implizit eine Kapazität in Höhe von 1.667 t CO₂ an.
- Die maximale Länge eines Güterzugs einschließlich Lok ist in Deutschland auf 740 m begrenzt, d. h., maximal
 48 Kesselwagen von VTG könnten einen Zug bilden und theoretisch auch größere Kapazitäten realisieren.
- EcoTransitWorld (ETW) nutzt für Chemistry Trains einen Load Factor von 100 % und einen Empty Trip Factor von ebenfalls 100 %. Allerdings geht ETW von einem Bruttozuggewicht von nur 1.200 t aus; dies wäre bei einem Zug von VTG etwa doppelt so hoch (ETW 2024).
- Der elektrische Endenergieverbrauch eines 1.200-t-Zuges liegt bei 25,5 Wh/tkm, der eines 2.000-t-Zuges bei 16,1 Wh/tkm.

Vorgehen bei der Bilanzierung CO₂-Kesselwagen

- Herleitung anhand eines Ökobilanzdatensatzes zur Herstellung eines Waggons für den Gütertransport (Ecolnvent 3.10: "goods wagon production" (RER))
- Anpassungen auf Basis VTG CO₂-Kesselwagen mit 62 m³:
 - 20 cm starker Polyurethanschaum (fest) zur Isolierung des Tanks ergänzt
 - Zusätzlicher Stahl (steel, low-alloyed, hot rolled) für den Tank ergänzt, sodass Gesamtgewicht dem des VTG entspricht (28,3 t)
- ▶ Damit werden die mit der Herstellung eines CO₂-Kesselwagens verbundenen THG-Emissionen auf 88,6 t CO₂e geschätzt und ein Bedarf an Stahl in Höhe von 26,2 t.

Unter der Annahme einer Beladung von 95 % des Volumens und einer Dichte von 1.037 kg/m³ bei einem maximalen Druck von 24 Bar und einer minimalen Temperatur von -40 °C (abgeleitet aus ASCO 2024) ergibt sich eine Kapazität von rund 60 t CO₂.

Vorgehen bei der Bilanzierung des Zugbetriebs

- Berechnung der Verkehrsleistung (tkm) analog zu VDZ (2024):
 - durchschnittliche Transportentfernung von 500 km multipliziert mit dem
 - CO₂-Aufkommen in Mio. t je Stützjahr entsprechend dem Szenario KN2045
- Berechnung des gesamten elektrischen Endenergieverbrauchs:
 - spezifischer Endenergieverbrauch je tkm eines Chemistry Train 25,5 Wh/tkm multipliziert mit der
 - Verkehrsleistung je Stützjahr
- Berechnung der THG-Emissionen je Stützjahr:
 - Emissionsfaktor aus dem Projektionsbericht je Stützjahr + Emissionen aus der Vorkette der Strombereitstellung multipliziert mit dem
 - gesamten Stromverbrauch je Stützjahr

Hergeleitete Kennzahlen und Emissionsfaktoren für den Bau der Infrastruktur und Fahrzeuge

		Stahl	Strom- verbrauch	Wärme- verbrauch	Kraftstoff- verbrauch	THG- Emissionen	Davon Stahl/ Eisen
		t	kWh	GJ	GJ	t CO₂e	%
Pipeline-Anschluss	pro km	60	-	-	k.A.	194	71 %
Pipeline Onshore (DN 500)	pro km	295	-	-	3.310	1.215	56 %
Pipeline Onshore (DN 700)	pro km	499	-	-	3.310	1.779	65 %
Pipeline Offshore (DN 700)	pro km	499	-	-	2.530	1.717	67 %
Kesselwagen	pro Stück	26,2	9.220	43,7	-	88,6	71 %
Gleisanschluss	pro km	140	k.A.	k.A.	k.A.	607	41 %

Quelle: eigene Berechnung

Emissionen aus Abscheidung und Kompression (im Stützjahr)

	Abscheide-	Strom-	EF-Strom	EF-Strom	Prozess-	EF-Wärme	EF-Wärme	Scope 1-2	Scope 3	THG-
	menge	verbrauch	Scope 1-2	Scope 3	wärme	Scope 1-2	Scope 3	Emissionen	Emissionen	Emissionen
	Mio. t CO ₂	GWh	g/kWh	g/kWh	TJ	g/MJ	g/MJ	1.000 t CO₂e	1.000 t CO₂e	1.000 t CO₂e
2030	6	1.776	92	83	22.529	18	16	568	512	1.080
2035	12	3.552	50	78	45.058	10	15	620	959	1.579
2040	28	8.288	31	73	105.134	6	14	883	2.107	2.991
2045	35	10.360	29	76	131.418	6	15	1.041	2.719	3.760

Für die Abscheidung und Komprimierung wird ein Energieverbrauch von 296 kWh Strom und 3.755 MJ Wärme je t CO₂ veranschlagt (Annahme: Post-Combustion capture) (Prognos et al., in Veröffentlichung)*.

Hinweis: Es wird angenommen, dass die Prozesswärme < 200 °C zur Hälfte per elektrischer Direktheizung und zur anderen Hälfte mittels Großwärmepumpe mit einem Wirkungsgrad von 250 % bereitgestellt wird.

Emissionen Bahnbetrieb (im Stützjahr)

	Verkehrs-	Verkehrs-	Strom-	EF-Strom	EF-Strom	Scope 1-2	Scope 3	THG-
	aufkommen	leistung	verbrauch	Scope 1-2	Scope 3	Emissionen	Emissionen	Emissionen
	Mio. t CO ₂	Mrd. tkm	GWh	g/kWh	g/kWh	1.000 t CO₂e	1.000 t CO₂e	1.000 t CO₂e
2030	6	3	77	92	83	7	6	13
2035	9	4,5	115	50	78	6	9	15
2040	9	4,5	115	31	73	4	8	12
2045	5	2,5	64	29	76	2	5	7

Für den Bahntransport werden eine mittlere Entfernung von 500 km und ein spezifischer Endenergieverbrauch (Strom) in Höhe von 25,5 Wh/tkm (ETW 2024) veranschlagt.

Emissionen Pipelinetransport (im Stützjahr)

	Verkehrs-	Verkehrs-	Strom-	EF-Strom	EF-Strom	Scope 1-2	Scope 3	THG-
	aufkommen	leistung	verbrauch	Scope 1-2	Scope 3	Emissionen	Emissionen	Emissionen
	Mio. t CO ₂	Mrd. tkm	GWh	g/kWh	g/kWh	1.000 t CO₂e	1.000 t CO₂e	1.000 t CO₂e
2030	0	6	85	92	83	8	7	15
2035	3	13	322	50	78	16	25	41
2040	19	35	896	31	73	28	66	93
2045	30	47	1.195	29	76	35	90	125

Für den Transport per Pipeline werden eine mittlere Entfernung von 1.407 km (eigene GIS-Auswertungen) und ein spezifischer Endenergieverbrauch (Strom) in Höhe von 15,2 Wh/tkm veranschlagt.

Speicherung/Verpressung des CO₂

Zusätzlich zum eigentlichen Scope entstehen bei der Speicherung des CO₂ im Injektionsgebiet Emissionen, die nicht geschätzt, jedoch auf Basis einer umfassenden LCA von Gentile et al. (2023) berücksichtigt werden. Gentile et al. haben eine umfassende Ökobilanz für das Projekt Northern Lights erstellt. Die funktionelle Einheit ist 1 t gespeichertes CO₂. Dazu werden die ermittelten THG-Emissionen auf eine zu speichernde Menge von 127,8 MtCO₂ bezogen.

Insgesamt ermitteln Gentile et al. für die Speicherung THG-Emissionen in Höhe von ca. 0,28 Mt CO₂, wovon 0,15 Mt auf den Bau und 0,10 Mt auf die Injektion zurückzuführen sind. Darüber hinaus entstehen weitere Emissionen durch Monitoring und Rückbau.

➤ Pro Tonne gespeichertes CO₂ verursacht die Injektion THG-Emissionen in Höhe von 760 g CO₂e.

Hinweis: Die Methodik von Gentile et al. ist nicht direkt mit dieser orientierenden Stoffstromanalyse vergleichbar und die LCI-Daten liegen für die hier durchgeführte Schätzung nicht vor, sodass auf die Ergebnisdarstellung zurückgegriffen wurde, ohne die genauen Inputs zu kennen!

Literatur zu Materialmengen und THG-Emissionsfaktoren

ASCO 2024: SCO Transportable CO₂ Tanks / ASCO CO₂ Semi-Trailers (zuletzt abgerufen am 16.04.2024)

DNV 2022: <u>Shipping's future role in carbon capture and storage</u> (zuletzt abgerufen am 16.04.2024)

Ecolnvent 2007: Bericht Teil V Erdgas

ETW 2024: <u>EcoTransIT World Methodology Report</u>

Gentile et al. 2023: Carbon footprint of the Northern Lights JV CO₂ transport and storage value chain

Nimtz 2016: Modellierung des Pipelinetransportes von CO₂-reichen Fluiden

Peletiri et al. 2018: <u>CO₂ Pipeline Design: A Review</u>

VTG 2024: Flüssiggas-Kesselwagen für tiefkalte Gase

Schmied und Mottschall 2013: <u>Treibhausgasemissionen durch die Schieneninfrastruktur und Schienenfahrzeuge in Deutschland</u>

IMPRESSUM

Herausgeberin: WWF Deutschland (Stiftung bürgerlichen Rechts, vertreten durch die Vorständin Meike Rothschädl), Reinhardtstraße 18, D-10117 Berlin

Stand: Juli 2024

Autorinnen/Autoren: Moritz Mottschall, Christoph Heinemann, Susanne Krieger (Öko-Institut e.V.)

Koordination: Karoline Schacht (WWF Deutschland)

Kontakt: karoline.schacht@wwf.de, lisa-maria.okken@wwf.de

Gestaltung/Grafik: Öko-Institut e.V.

Bildnachweise: freepik

© 2025 WWF Deutschland, Berlin